
SOFTWARE-—PRACTICE AND EXPERIENCE, VOL. 21 (8), 877–889 (AUGUST 1991)

Compiled Instruction Set Simulation

CHRISTOPHER MILLS, STANLEY C. AHALT AND JIM FOWLER
Department of Electrical Engineering, The Ohio State University, 2015 Neil Avenue,

Columbus, OH 43210, U.S.A.

SUMMARY

An efficient method for simulating instruction sets is described. The method allows for compiled
instruction set simulation using the macro expansion capabilities found in many languages. Additionally,
we show how the semantics of the C case statement allows instruction branching to be incorporated in
an efficient manner. The method is compared with conventional interpreted techniques and is shown to
offer considerable performance benefits.

KEY WORDS Interpreters Simulation Emulation Instruction set design

INTRODUCTION
There are a number of reasons why instruction set simulation can be one of the
most important steps in the development of an efficient computer architecture.
First, simulation requires that exact specifications of the instructions be developed.
Secondly, if a compiler is available for the instruction set, real programs can be
tested on the architecture. This also means that the compiler can be debugged before
the hardware is constructed, thus, simplifying the debugging of each portion of the
system. 1 Thirdly, profiling instruction frequency allows the instruction set designer
to determine the effectiveness of individual instructions. For example, RISC
architectures 2-5 emphasize the inclusion of only the most frequently used operations
in the instruction set. Fourthly, through extensive simulations of synthetic and real
programs the computer architect can gain insight into the expected performance of
the implemented architecture. 6 Finally, careful matching of the compiler and the
computer architecture can yield a particularly elegant computing system. 7’ 8

Instruction-set simulation is a well-established technique. Classical descriptions of
simulation methods are discussed by Gries 9 and by Calingaert. 10 More recently, May
has described efforts to build fast, efficient simulators by grouping source instructions
and translating them as a unit. 11 An excellent overview by Dasgupta 12 discusses the
use of various simulation techniques.

Unfortunately, regardless of the simulation technique used, simulating an archi-
tecture can be very time consuming. Most simulators are based on instruction
interpreters which operate at the register transfer level. The simulator is usually
written in either a hardware description language (HDL) 13,14 or using a standard
language such as C. A simple benchmark which takes a minute to run on a computer
may take many hours to simulate. At best this reduces both the number and the

0038–0644/91/080877–14$07.00 Received 13 September 1990
© 1991 by John Wiley & Sons, Ltd. Revised 12 March 1991

878 C. MILLS, S. C. AHALT AND J. FOWLER

size of the programs the designer can test, and may result in an architecture which
is good at running only a few benchmarks and not actual programs. At worst, an
under-tested architecture can have architectural errors which are not discovered until
later in the design phase. 1

Thus, it is to the designer’s advantage to have the simulator operate as efficiently
as possible. This paper discusses a simple method to reduce the execution time of
instruction set simulators greatly. Although the method introduced here can be
of significant utility, interpreted simulation techniques have alternative strengths,
particularly when used for the detailed analysis of data and instruction path utiliz-
ation.

INTERPRETED SIMULATION

Instruction set simulation is normally done interpretively. The program is stored in
the simulator’s memory in the same way as it would be in the simulated computer.
The simulator program repeatedly fetches instructions from memory, using the
opcode to select a routine to execute that will simulate the effects of that opcode,
as well as maintain statistics, e.g. instruction frequency, execution time, etc.

For example, suppose we were investigating the frequency of use of the instructions
in a stack machine. One of the instructions is an ‘add top of stack to accumulator’
command, which can be represented symbolically as

AC ← AC + [SP]; SP ← SP+1; PC ← PC+1;

We could simulate this with the following C code:

switch (*PC++) {
case ADD:

++ freq[ADD]; AC += *SP++; break;

}

The simulator will fetch the ADD instruction at the program counter (PC), increment
it and branch to the appropriate case. It will pop the top of the stack and add it to
the accumulator, and increment the counter that keeps track of the number of times
ADD has been executed.

COMPILED SIMULATION

Simulating a computer architecture is similar to implementing a programming langu-
age. Both the programming language and the assembly language of the simulated
computer represent theoretical machines which are being mapped onto real hard-
ware. There are two approaches to this mapping: interpretation and compilation.

Compilation has distinct efficiency advantages over interpretation; an interpreter
spends the majority of its time fetching and decoding the operations, whereas a
compiled simulator spends most of its time in performing the computation. In an
interpreted programming language, the overhead of interpretation steps can be
reasonably small, because the individual instructions being interpreted perform a lot

COMPILED INSTRUCTION SET SIMULATION 879

of work, but in an instruction set simulation the interpretation steps consume much
of the time spent to simulate an instruction. Of course, the relative cost of interpretation
as opposed to computation depends on the complexity of the instruction, addressing
modes, etc. Typically, however, simulators based on interpretation techniques execute
from ten to a hundred instructions for each interpreted instruction. 11

Using C macros

The C compiler, along with other languages, provides an excellent, and well-
known, facility for ‘compiling’ simulated assembly language into the host machine
language—in-line macro expansion. All the experimenter needs to do is create a
macro for each instruction to be emulated, and code the assembly language as a C
function. Using the previous example, ADD would be defined as

#define ADD ++ freq[ADD]; AC += *SP++;

When ADD is used in line, the C preprocessor will expand it into the two C
statements, which in turn will be compiled directly into machine language on the
host machine. Since the machine register AC can be declared to be a register variable
in C, the result is usually a one-for-two mapping between the simulated assembly
language and the host machine language—one instruction to do the simulation, and
one instruction to do the instruction frequency accounting. For example, on the Sun
C compiler, based on pee, ADD generates the instructions

addql #1 ,_freq+0x4
addl a4@+, d7

The only problem with using this approach is branching. Although we could use
labels and goto statements to accomplish simple branching, indirect jumps, including
‘return from subroutine’ instructions cannot be directly implemented with a goto.

Luckily, the C switch statement can be used to implement branching. Each macro
is given a case label with the address of the instruction, and the simulated program
is enclosed in a switch statement based on the program counter. If a branch instruc-
tion is encountered, the macro sets the program counter to the destination of the
branch and does a break, transferring control back to the enclosing switch statement,
which then branches to the correct instruction.

Since the case statement in C acts only as a label, unless there is a break statement
the flow of control will fall through to the next case statement, which is the next
simulated instruction. This means that only instructions which cause a branch to
occur have to modify the program counter and break out of the switch statement.
All the other operations simply fall through to the next case. The program counter
is not advanced, but simply reloaded when the next branch occurs. This allows zero
overhead for all non-branching instructions.

We now define our ADD and BAZ (‘branch on accumulator zero’) instructions as

#define ADD(a) case (a): ++ freq[ADD]; AC += *SP++;
#define BAZ(a, d) case (a): +freq[BAZ]; if (AC = = 0) \

{ PC = (d); break; }

880

and use

C. MILLS, S. C. AHALT AND J. FOWLER

them like this:

while (TRUE)
switch (PC) {

ADD(0x7402);
BAZ(0X7404, 0x7402);

}

which means there is an ADD opcode at address 740216 and a BAZ instruction at
7404 16 which branches back to the ADD.

Since the switch construct will usually be compiled by the C compiler into an
efficient jump table, the overhead of a branch is only the overhead of an indexed
indirect jump.

The switch construct also has the added benefit of trapping out illegal instruction
references. An ill-formed branch cannot jump into the middle of an instruction or
into a data area because there is no corresponding case label for that address.
Finally, one should note that the case labels do not need to correspond to the actual
instruction addresses. As long as the value in the ‘program counter’ is the same as
the case label, the branch will function. It is therefore possible to construct an
assembler which would take advantage of this feature, and just output arbitrary
integers for each label it encounters. The labels would not even have to be in
numerical order, since C does not place any restrictions on the ordering of case
labels.

ADDRESSING MODES AND FLAGS

Complex addressing modes and flags present other problems. If instructions have
many possible addressing modes, it is best to have a set of macros to calculate the
effective address and another set of macros to implement the operations. Likewise
if the architecture is such that the CPU flags are set after arithmetic operations, a
group of flag-setting macros can be created.

Implementing addressing modes

Separating the macros that define the address modes and the instruction operations
results in instruction definitions that are shorter and clearer. For example, suppose
an architecture has addressing modes ‘direct’ and ‘indirect’ and the following instruc-
tions:

ADD a

ADX d

XAD

‘add accumulator direct’
AC ← AC + [a];

‘add accumulator indexed’
AC ← A C + [X + d] ;

‘add X to accumulator’
AC ← AC + X;

COMPILED INSTRUCTION SET SIMULATION 881

LDD a ‘load accumulator direct’
AC ← [a];

LDX d ‘load accumulator direct’
AC ← [X + d];

XLD n ‘load X immediate’
X ← n:

where X is an index register, d is a displacement, a is an absolute address and n is
an immediate value. To implement these instructions as macros, we define the
operations ‘add’ and ‘load’ as

define ADD_OP(d, s) (d) += (s)
define LD_OP(d, s) (d) = (s)

and the addressing modes ‘direct’ and ‘indexed’ as

define DIRECT(a) MEM[a]
define lNDEXED(d) MEM[X + d]

and then the instructions as

define ADD(a, da) case (a): + +freq[ADD]; ADD_OP(AC, Direct);
define ADX(a, d) case (a): + +freq[ADX]; ADD_OP(AC, lNDEXED(d));
define XAD(a) case (a): + +freq[XAD]; ADD_OP(AC, X);
define LDD(a, da) case (a): + +freq[LDD]; LD_OP(AC, Direct);
define LDX(a, d) case (a): + +freq[LDX]; LD_OP(AC, lNDEXED(d));
define XLD(a, n) case (a): + +freq[XLD]; LD_OP(X, n);

Implementing flags

Consider an architecture that has a status register whose least-significant bit is the
‘zero’ flag. The ‘zero’ flag is set when an arithmetic operation yields a zero result.
We can define the status register and ‘zero’ flag as

unsigned long int status = 0;
#define ZERO 0x00000001

Then we define the following macros to test, set, and clear a flag in the status
register:

#define FLAG(f) (status & (f))
#define SETFLAG(f) status I= (f)
#define CLRFLAG(f) status &= –(f) – 1

These macros are then used in the implementation of the instruction set macros.
For example, we can redefine the ADD instruction so that the ‘zero’ flag is set if the
result is zero and the BAZ (‘branch on zero’) instruction to take advantage of the
‘zero’ flag:

882 C. MILLS, S. C. AHALT AND J. FOWLER

#define ADD(a) case (a): + +freq[ADD]; \
AC += *SP++; \
if (AC = = 0) SETFLAG(ZERO); \
else CLRFLAG(ZERO);

#define BAZ(a,d) case (a): + +freq[BAZ]; \
if (FLAG(ZERO)) \
{ PC = (d); break;

The FLAG, SETFLAG and CLRFLAG macros can also be used
in a similar fashion.

}

with other flags defined

LARGE PROGRAMS AND OTHER CONSIDERATIONS

In general, compilers will have some limit on the size of switch statements. This
limit, albeit a limitation in the compiler, is a restriction on the length of simulation
code that can be placed in a switch construct and will vary between compilers.

For example, the cc and gcc compilers used on Sun 3 workstations were investi-
gated to determine their switch size limitations. These programs compile the switch
construct into similar indexed indirect jumps using jump tables. For correct compi-
lation of the switch, the object code generated from the body of the switch statement
cannot exceed the range of this indexed indirect jump. Thus the limit on the switch
is not a limit on the number of case statements a switch can contain; rather, it is a
restriction on the overall size of the code generated from all the case statements.
For these compilers, tested on a Sun 3/80, the maximum size of a compiled switch
statement is approximately 32K bytes. Each compiler handles programs exceeding
the 32K byte limit differently. The cc compiler generates an error during assembly
of the compiled code. On the other hand, the gcc compiler generates no errors
during compilation or assembly, but the object code produces a ‘segmentation fault’
error when executed.

Fortunately, the compiled simulation technique can be adapted to handle larger
programs of simulation code by using several switch statements instead of one.
Specifically, we can use C code similar to the following:

while (TRUE) {
switch (PC)

{
/* Start of program */

PC = 0x7600;
}

switch (PC)
{

ADD(0x7600);

PC = 0x7752;
}

switch (PC)

COMPILED INSTRUCTION SET SIMULATION 883

{
SUB(0x7a5b);

HALT(0x7ab2);
}

}

The simulation code is broken into blocks which do not exceed the switch size limit.
Because the PC is not incremented with each instruction, it is necessary, at the end
of each switch block, to set the PC to the address of the first instruction of the
following switch. It can be verified that branches will work properly, since the switch
statements are enclosed within a while loop. However, by using multiple switches
we have sacrificed the ability to trap illegal instruction references because we no
longer can have a default statement in any of the switch blocks. A default would
prevent branching from one switch block to another. Also, it should be noted that
partitioning the program into several switch statements introduces a sequential search
among the switch blocks on the execution of a branch instruction. The cost of this
search will increase with program size, but it will remain insignificant in relation to
the execution of the other instructions.

There are other problems which might be encountered with the use of the compiled
simulation technique we describe here. For example, complex source instructions
might generate code that is not easily optimized by the particular compiler being
used. However, interpretive simulators can also be afflicted by this problem and
better compilers will yield faster code in either case.

A related concern is that the code generated by the compiled simulator may
adversely affect cache and virtual memory performance on the host machine, thus
minimizing the speed advantages of the technique. This is due to the fact that the code
generated by this technique largely consists of jump tables, and, during execution, the
instructions being simulated may well be distributed over a fairly large address space.
Again, interpretive simulators can also be afflicted by this problem. In general the
principle of locality of reference will hold for programs written using the compiled
technique as well as the interpreted technique.

When simulating large programs, the compilation time of the compiled simulator
will become significant and may outweigh the savings in execution time. If a very
large compiled simulation program is expected to be executed only a few times, then
interpreted simulation may be a more efficient process when one considers the cost
of compilation of the compiled simulator. However, if this program needs to be run
many times, then the increased execution speed of the compiled simulator will
probably offset the one-time cost of compilation.

EXAMPLES AND RESULTS

As a complete example, we discuss the performance characteristics of a simple CPU
on the Fibonacci benchmark, given below:

unsigned main()
{

unsigned i, value, fib();

884 C. MILLS, S. C. AHALT AND J. FOWLER

for(i = 1; i <= 100; ++i)
value = fib(24);

return value;
}
unsigned fib(n)

unsigned n;
{

if (n > 2)
return fib(n–1) + fib(n–2);

else
return 1;

}

The processor that we will emulate has four registers: A, the accumulator, P, the
program counter, S, the stack pointer, and F, the frame pointer of the currently
executing procedure. We will implement a subset of the processor’s instructions as
macros, since we only need 15 instructions to code the benchmark.

The complete program is listed in Appendix I. It can be broken down into three
logical segments: the macro definitions for the instruction set, the execute function
which contains the assembly code for the Fibonacci benchmark, and the main program
which calls execute and prints the execution statistics. The execute function and the
macro definitions could be kept in separate files to simplify changes to the benchmark
or instruction set. An example of program output is given in Appendix II.

To determine the effects of compiled simulation, the program was compared
against a nearly identical version which used interpreted simulation. In addition,
several other configurations were tested to determine the performance of the tech-
nique when used in a realistic fashion. The cache was implemented both as a function
call, and as an external, independent process which communicated via a pipe. The
accounting code kept track of the frequency of use of each instruction. The results
of the simulations are shown in Table I.

Most importantly, it can be seen from Table I that the compiled simulator is
nearly three times faster than the interpreted simulator. Also note that the savings
in execution time outweigh the additional cost of compilation time of the compiled
simulator.

Note also that although the incorporation of a cache (either functional or piped)

Table I.

Program Time (s) Relative speed

Native code 24 1·00
Compiled, no accounting † 82 3·42
Compiled, no cache † 198 8·25
Interpreted, no cache 549 2288
Compiled, functional cache † 2728 113·67
Compiled, piped cache † 9876 411·50

† Compilation time: approximately 16 s

COMPILED INSTRUCTION SET SIMULATION 885

into the system has an obvious cost in execution time, in a practical system the cache
simulation is likely to be a pivotal part of the proposed architecture being simulated.
Interpreted simulators are also slowed down when caching is incorporated. We
include the cache timing to show that the functionally implemented cache incurs
significantly less cost, even though there are associated drawbacks, as discussed
below.

Performance statistics on cache hits and misses can be gathered by having (1) the
macro pass the address of the current instruction (which is the first parameter to the
macro) to a function which performs the cache mechanism, or by (2) writing the
address out to standard output, where it can be read by a separate cache program,
or by (3) sending output to a file for post-simulation analysis. As shown above, the
first approach, a functionally implemented cache, has the advantage of speed, but
the second approach, using a piped cache, has the advantage of generality—the
cache program and the simulator are distinct; the cache size can be increased without
recompiling the simulator, and the instruction set can be modified without changing
the cache. The final approach, which we did not benchmark, would also incur the
overhead of file I/O and require that an additional program be executed to generate
statistics on the cache performance.

CONCLUSIONS

Compiled simulation is clearly superior to interpreted simulation, especially when the
architecture being simulated can be easily described by a sequence of C statements. It
has the advantages of efficiency, portability and elegance. Although other program-
ming languages could be used, the C preprocessor and the peculiarities of the C
switch statement make it particularly well suited. A macro assembler might do a
better job of translating certain architectures (i.e. ones with flags), but at a significant
loss of portability.

The compiled approach does have the drawback that it does not conceptually
model the processor’s internal actions as well as the interpreted approach. At this
level of abstraction, however, one would probably need a completely different
simulator, one which is event driven. Consequently, compiled instruction simulators
are best used as an efficient instruction set prototyping tools.

1.

2.

3.

4.

5.

6.

7.

REFERENCES

D. R. Ditzel and A. D. Berenbaum, ‘Using CAD tools in the design of CRISP’, IEEE Design
and Test, June 1987, pp. 21–31.
D. A. Patterson, ‘Reduced instruction set computers’, Communications of the ACM, 28, (1), 8–21
(1985).
J. S. Birnbaum and W. S. Worley, Jr., ‘Beyond RISC: high-precision architecture’, IEEE
COMPCON. 1986. pp. 40–47.
A. D. Berenbaum; D. R. Ditzel and H. R. McLellan, ‘Introduction to the CRISP instruction set
architecture’, IEEE COMPCON, 1987, pp. 86–90.
C. E. Gimarc and V. M. Mulutinovic, ‘A survey of RISC processors and computers of the mid-
1980s’, IEEE Computer, September 1987, pp. 59–69.
A. Tanenbaum, J. Stevenson, E. G. Keizer and H. Van Staveren, ‘Description of an experimental
machine architecture for use with block structured languages’, in Informatica Rapport ’81, Vrije
University, Amsterdam, January 1983.
N. Wirth, ‘Microprocessor architectures: a comparison based on code generation by compiler’,
Communications of the ACM, 29, (10), 978–990 (1986).

886 C. MILLS, S. C. AHALT AND J. FOWLER

8. P. Schulthess, ‘A reduced high-level-language instruction set’, IEEE Micro, 4, (June), 8–20 (1984).
9. D. Gries, Compiler Construction for Digital Computers, Wiley, New York, 1971.

10. P. Calingaert, Assemblers, Compilers, and Program Translation, Computer Science Press, Rock-
ville, MD, 1979.

11. C. May, ‘MIMIC: a fast System/370 simulator’, in Proceedings of the SIGPLAN ’87 Symposium
on Interpreters and Interpretive Techniques, St. Paul, Minnesota, June 1987, pp. 1–13.

12. S. Dasgupta, Computer Architecture: A Modern Synthesis, Volume 2, Wiley, New York, 1989.
13. S. Dasgupta, ‘Hardware description languages in microprogramming systems’, IEEE Computer,

18, (1985), pp. 67–76.
14. W. D. Murray, Computer and Digital System Architecture, Prentice Hall, Englewood Cliffs, New

Jersey, 1990.

APPENDIX I. EXAMPLE PROGRAM

/* Simulated Stack Architecture */

#include <stdio. h>

/* RAM from 0..START-1, program at START..??? */
#define START 0x00001000

#define NCODES 15

typedef unsigned long int UL;

char *opc[NCOD=] = {
"ADD ", /* A + (S++) -> A; */
"ADI n", /* A + n - > A ; */
"CBLS n", /* if (S++) <= A (unsigned) then n -> P; */
"HALT ", /* halt; */
"JSR n", /* P -> (--S); n -> P; */
"LAI n", /* n -> A; */
"LAR n", /* (F+n) ->A; */
"LDI n", /* A -> (--S); n -> A; */
"LDR n", /* A -> (--S); (F + n) -> A; */
"LDS n", /* n -> S; */
"LINK n", /* F-> (--S); S->F; S+n ->S; */
"PA ", /* A -> (--S); */
"PI n", /* n -> (--S); */
"SAR n", /* A-> (F+n); */
"UNLK n" /* F -> S; (S++) -> F; (S++) -> P; S + n -> S; */

};

UL cycles[NCODES] = {
2, 2, 3, 3, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4

};

UL freq[NCODES], PC, FP, SP, AC;

#define paddr(a) fprintf(stderr, "%1x (START + %ld)", (a), \
(a) - START)

COMPILED INSTRUCTION SET SIMULATION

void main()
{

int i;
UL tinsr = 0, tcyc = 0, starttime, *mem, *malloc(), time();

if ((mem = malloc(START * sizeof(UL))) == NULL) {
fprintf(stderr, "ERROR - cannot allocate RAM.\n|";
exit(10);

}
starttime = time(0);
if (!execute(mem))

fprintf(stderr, "Executed bad address at\n");
else

fprintf(stderr, "Normal termination at\n");
for (i = 0; i < NCODES; ++i) {

tinsr += freq[i];
tcyc += freq[i] * cycles[i];

}
fprintf(stderr, “ P = “);
paddr(PC);
fprintf(stderr, “.\n S = “);
paddr(SP);
fprintf(stderr, “.\n F=”);
paddr(FP);
fprintf(stderr, “.\n A = %lx (%ld).\n\n”, AC, AC);
fprintf(stderr,

“Total instructions : %lu. Total cycles : %lu.\n\n”,
tinsr, tcyc);

fprintf(stderr,
“Total execution time : %lu seconds.\n\n”,
time(0) - starttime);

for (i = 0; i < NCODES; ++i)
fprintf(stderr, “%-10s%1Olu%10.2f%10lu%10.2f\n”,

opc[i], freq[i], freq[i] * 100.0 / tinsr,
freq[i] * cycles[i], freq[i] * cycles[i] *
100.0 / tcyc);

}

*ifdef CACHE
#define FETCH(a) case a: putw(a, stdout);
#else
#define FETCH(a) case a:
#endif

#define SAVESTATE(a) PC= a; SP=S-M; FP=F -M; AC=A;

/* opcode definitions */

887

#define ADD(a) FETCH(a); ++freq[0]; A += *S++;
#define ADI(a, n) FETCH(a); ++freq[1]; A += n;
#define CBLS(a, n) FETCH(a); ++freq[2]; if (*S++ <= A) \

{P =n; break; }

888 C. MILLS, S. C. AHALT AND J. FOWLER

#define HALT(a) FETCH(a); ++ freq[3]; SAVESTATE(a); return 1;

#define JSR(a, n) FETCH(a); ++freq[4]; *--S = a + 2; \
P = n; break;

#define LAI(a, n) FETCH(a); ++freq[5]; A = n;
#define LAR(a, n) FETCH(a); ++freq[6]; A = F[n];
#define LDI(a, n) FETCH(a); ++freq[7]; *--S = A; A = n;
#define LDR(a, n) FETCH(a); ++freq[8]; *--S = A; A = F[n];
#define LDS(a, n) FETCH(a); ++freq[9]; S = M + (n);
#define LINK(a, n) FETCH(a); ++freq[10]; *--S = F - M; \

F= S;S+=n;
#define PA(a) FETCH(a); ++freq[11]; *--S = A;
#define PI(a, n) FETCH(a); ++freq[12]; *--S = n;
#define SAR(a, n) FETCH(a); ++freq[13]; F[n] = A;
#define UNLK(a, n) FETCH(a); ++freq[14]; S = F; F = M + *S++; \

P = *S++; S += n; break;

int execute(n)
register UL * M;

{
register UL * S = M, *F = H, A = 0, P = START;

for (;;) /* ever */
switch (P) {
LDS (START, START) ;
JSR (START + 2, START + 5);
HALT(START + 4);
LINK(START + 5, -2) ; /* main() { int i, value; */

LAI (START + 7, 1); /* for (i = 1; i <= 100; ++i) */

SAR (START+ 9, -1);
PI (START + 11, 24); /* value = fib(24);
JSR (START + 13, START + 31);
SAR (START + 15, -2);
LAR (START + 17, -1);
ADI (START + 19, 1);
SAR (START + 21, -1);
LDI (START + 23, 100);
CBLS(START + 25, START + 11)
LAR (START + 27, -2); /* return value; }
UNLK(START + 29, 0);
LINK(START+ 31, 0); /* fib(x) int x; {
LAR (START + 33, 2); /* if (x > 2)
LDI (START + 35, 2);
CBLS(START + 37, START + 56);
LAR (START + 39, 2); /* return fib(x - 1) +
ADI (START + 41, -1);
PA (START + 43);
JSR (START + 44, START + 31);
LDR (START+ 46, 2); /* fib(x - 2);
ADI (START + 48, -2);
PA (START + 50);
JSR (START + 51, START + 31);
ADD (START + 53);

*/

* /

*/
*/

*/

*/

COMPILED INSTRUCTION SET SIMULATION 889

UNLK(START + 54, 1);
LAI (START + 56, 1); /* else return 1; }

UNLK(START + 58, 1);
default: SAVESTATE(P); return O;

}
}

APPENDIX II. PROGRAM OUTPUT

Normal termination at
P = 1004 (START + 4).
s = 1000 (START + 0).
F = 0 (START + -4096).
A = b520 (46368).

Total instructions : 92735408. Total cycles : 264296023.

Total execution time :

ADD
ADI n
CBLS n
HALT
JSR n
LAI n
LAR n
LDI n
LDR n
LDS n
LINK n
PA
PI n
SAR n
UNLK n

4636700
9273500
9273600

1
9273501
4636801
13910301
9273600
4636790

1
9273501
9273400

100
201

9273501

198 seconds.

6.00 9273400
10.00 18547000
10.00 27820800
0.00 3
10.00 27820503
5.00 9273602
15.00 41730903
10.00 27820800
5.00 18546800
0.00 2
10.00 27820503
10.00 18546800
0.00 300
0.00 603
10.00 37094004

3.51
7.02
10.53
0.00
10.53
3.51
15.79
10.53
7.02
0.00
10.53
7.02
0.00
0.00
14.04

* /

	Compiled Instruction Set Simulation
	SUMMARY
	INTRODUCTION
	INTERPRETED SIMULATION
	COMPILED SIMULATION
	Using C macros

	ADDRESSING MODES AND FLAGS
	Implementing addressing modes
	Implementing flags

	LARGE PROGRAMS AND OTHER CONSIDERATIONS
	EXAMPLES AND RESULTS
	CONCLUSIONS
	REFERENCES
	APPENDIX I. EXAMPLE PROGRAM
	APPENDIX II. PROGRAM OUTPUT

