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Abstract 

In this paper, we investigate the performance of a 
sparsity-preserving graph embedding based approach, 

called [I graph, in hyperspectral image dimensionality 

reduction (DR), and propose noise-adjusted sparsity­

preserving(NASP) based DR when training samples are 

unavailable. In conjunction with the state-of-the-art 

hyperspectral image classifier, support vector machine 
with composite kernels (SVM-CK), the experimental 

study show that NASP can significantly improve the 
classification accuracy, compared to other widely used 

DR methods. 

1 Introduction 

Hyperspectral imaging (HSI) is a relatively recent 
technology in which the airbone remote sensors cap­
ture the reflected energy in hundreds to thousands nar­
row spectral bands in each spatial location in the image 
scene. It is well known that the high data dimension­
ality results in the problem of curse of dimensionality 
(or the Hughes phenomenom). Dimensionality reduc­
tion (DR), therefore plays a critical step in most of the 
HSI analysis, especially in c1assifiation task when the 
number of labeled training samples is limited. Com­
monly used DR techniques include unsupervised ap­
proaches, such as principal component analysis (PCA), 
noise-adjusted principal component analysis (NAPCA) 
[7], as well as supervised approaches, such as Linear 
Discriminant Analysis (LDA) [1]. 

Recently, Yan et al. [11] proposed a general ap­
proach known as graph embedding to unify all of 
the linear DR algorithms within a common frame­
work. In graph embedding, graph construction be-
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comes critical: an appropriate graph provides a high 
level of dimensionality reduction and preserves the im­
portant information, such as anomalous pixels, man­
ifold,and multimodal structures. Two popular graph 
structures: k-nearest neighbor and E-radius ball [6] 

connect points within its k-nearest samples or surround­
ing E ball, respectively, the graph-weight then calcu­
lated based on pairwise Euclidean distance [2]. It is 
simple to construct those graphs but the parameters-the 
size of sample neighborhood k and the radius of the 
ball E- are very sensitive to noise and difficult to be 
identified in real world applications. Departing from 
traditional graph construction, Cheng et al. [4] ex­
ploits the merits of sparse representation to construct 
a novel graph, called [I-graph, which inherits many ad­
vantages of sparse reconstruction and creates an adap­
tive and nonparametric graph. Motivated by the promis­
ing results of Sparsity Preserving projection method 
(SP) derived from [I-graph [4], we propose an unsu­
pervised dimensionality reduction algorithm, Noise Ad­
justed Sparsity Preserving (NASP), to reduce the di­
mension of HSI before employing an classifier such 
as Composite Kernels-based Support Vector Machine 
(SVM-CK). Unlike PCA or NAPCA, NASP is designed 
to preserve the underlying multimodal structure and the 
sparsity of non-Gaussian class distribution in the pro­
jected domain. Compared to the original SP-based DR 
method, NASP is expected to better preserve the under­
lying data structure after noise is better taken care of. 

The remainder of the discussion is organized as fol­
lows. Section 2 describes the graph-embedding and 
proposed DR algorithm: NASP. Section 3 presents the 
SVM-CK-based HSI classifier, and NASP-SVM-CK in 
conjunction with the NASP-based DR process. Section 
4 reports real-data experimental results. Finally, several 
concluding remarks are made in Sec. 5. 



2 Graph Embedding and NASP 

Let a hyperspectral data matrix be represented as 
X = [XI,X2, . . .  , XM ] and Xi E lRN

, where !vI is the 
number of pixels and N is the number of bands. From 
the point of view of graph embedding, let G={X, W} 
be an undirected weighted graph with vertex set X and 
similarity (weight) matrix W E lRMxM where Wij 
measures the similarity between two vertices, Xi and 
Xj. The diagonal matrix D and the Laplacian matrix 
L of a graph G are defined as: L = D - W, Dii = 

Lj# i Wij, Vi. In case of linear projection, the reduced 
dimensional feature space is derived by linear projec­
tion: y = pT X, where P is the unitary projection ma­
trix, then the objective function becomes: 

P* = arO' min '\"'" IlpT Xi - pT X ,I12wi, b '1' '1' � J J 
P XBX P=q i#j 

or pi P=q 
(1) 

where q is a constant and B is a penalty graph. In light 
of linearization of graph embedding, PCA has intrin­
sic graph connecting all of the data pairs with equal 
weithts and constrained by scale normalization on the 
projection vector (Wij = 1/ M, i oJ j; B = 1). The 
quality of the aforementioned DR techniques, there­
fore, completely relies on the construction of intrin­
sic graph. However, the two existed famous graphs: 
k-nearest-neighbor method, and E ball method have 
some limitations: (1) Sensitive to data noise: Due to the 
graph-weight construction (Gaussian-kernel [2] or 12_ 
reconstruction [9]) is found on pair-wise Euclidean dis­
tance, they are very sensitive to noise. (2) Datum-non 
adaptive neighborhood: to determine the neighborhood 
of each sample, both methods use fixed global parame­
ter: k or radius-E, and hence fail to offer datum-adaptive 
neighboorhood. To overcome those shortcommings, the 
II-graph [4] has been proposed by utilizing the recent 
advances in sparse coding [5]. 

An II-graph [4] exploits the sparse representation 
(SR) of each pixel in term of the rest ones in the training 
data set. In particular, II-graph uncovers the underlying 
sparse reconstruction relationship of each pixel, and it is 
desirable to preserve these reconstruction relationships 
in the reduced-dimensional-feature space. Based on the 
reconstruction of II-graph, the proposed DR algorithm, 
NASP, is to suppress the noise effect in data structure, 
which can be performed with two steps: the first step 
conducts noise-whitening to the original data, and the 
second step calculates P via (2). Note that in the low­
dimensional space, the reconstruction capability is mea­
sured by 12 norm instead by 11 norm for computational 
efficiency. Derived from (I ),the transformation matrix 

P can be found via optimization: 

P* = min '\"'" IlpT Xi - pT xJI12wiJ, 
P'1'XXl'P=I � i#j 

= min tr(pT XLXT P) 
P'1'XX'1'P=I 

. tr(pT X LXT P) 
= m)n tr(pT XXT P) (2) 

where Wij is determined by the reconstruction of 11_ 
graph and penalty graph B = I. This tmce -
mtio optimization problem is easily solved by the gen­
eralized eigenvalue problem as: X LXT Pk+!-j = 

AjX XT Pk+I-j where Pk+I-j is the eigenvector cor­
responding to the Jth largest eigenvalue Aj as well as 
the (k + 1 - j)th column vector of the transform ma­
trix P. The construction of II-graph represents four 
advantages: (1) robust to noise: thanks to the overall 
SR instead of conventionally pairwise Euclidean dis­
tance and the noise-whitenning step, II-graph is more 
robust to noise in many pattern recognition tasks. (2) 
sparsity: recent research on manifold learning [2] shows 
that the sparse graph conveys valuable information for 
classification purpose; the sparsity of II-graph is auto­
matically determined instead of manually identified as 
in k-nearest-neighbor and E-ball method. II-graph is 
therefore a non-parametric method. (3) datum-adaptive 
neighborhood: the number of neighbors defined by 11_ 
graph is adaptive to each sample, which is valuable 
for aplications with unevenly distributed data, e.g, hy­
perspectral image with non-homogenous regions. (4) 
unified construction: conventional graph construction 
process is typically divided in two steps: the graph 
adjacency structure and the graph-weight construction; 
however, those two steps are solved simultaneously in 
II-graph. 

It is hence expected that SP and NASP will sur­
pass PCA and NAPCA as a DR projection when data 
are severely non-Gaussian, which is a prevalent situa­
tion in real world applications. In the next section, we 
will show that the combination of NASP and SVM-CK 
outperforms the existing DR methods for spectral -
spatial HSI classification. 

3 Spectral-Spatial Hyperspectral Image 
Classification Scheme 

Neighboring hyperspectral pixels usually belong to 
the same class because their spectral signatures are 
highly correlated. A mechanism to incorporate the con­

textual information into spectral information can signf­
icantly improve the classification accuracy. In this sec­
tion, we first introduce the famous spectral - spatial 



classifiers in the literature: SVM-CK, then outline the 
proposed algorithms: NASP-SVM-CK. 

Support Vector Machine (SVM) and SVM-CK were 
fully described in [3 , 10] as state-of-the-art kernel-based 
classification techniques. Note that one usually works 
with the transfonned input data, rather than the orig­
inal input space samples, Xi. A full family of com­
posite kernels for the combination of spectral kernel 
(Kw) and spatial (Ks) kernel was described in [3]. No­
tice that in [3], the authors: (a) Define the spatial fea­
tures (x�) be the average of the reflectance values in a 
given window around the pixel Xi for each band, and 
let the spectral features xi be the actual spectral sig­
nature (Xi = xi). (b) Using polynomial kernel for 
spectral features and RBF kernel for the spatial fea­
tures. In this paper, we use weighted summation ker­
nel: K(Xi,Xj) = JLKs(xi,xj) + (1 - JL)Kw(xi,xj) 
with one modification: polynomial kernel is used for 
spatial features and RBF kernel is used for spectral fea­
tures. We found that this new composite-kernel gives 
better result than original one: from 2 to 3(%) higher in 
overall accuracy in our experiments. 

It has been shown in the literature that NAPCA can 
dramatically outperform PCA as a preprocessing tool 
in preserving useful infonnation in the original data . 
We therefore argue that NASP can serve as a better DR 
method than SP for SVM-CK. In this paper, NASP­
SVM-CK, is proposed to solve spectral - spatial HSI 
classification. 

NASP-SVM-CK 

algorithm: 
I )Conduct noise-whitening to the original data 
2)Construct the II-graph and graph weight W 
3)Derive the projection matrix P from (2) 
4)Project training data Y = pTX 
5)Project test data E = pTA 
6)Calculate Ks, Kw, and K kernels 
7)Class labels z = SVM(K, <;"" , IL) 

In the following section, we compare our pro­
posed algorithm, NASP-SVM-CK with SP-SVM-CK, 
SVM-CK, PCA-SVM-CK, NAPCA-SVM-CK, and 
MLRsubMLL, [8], a recently proposed supervised 
spectral - spatial classification. 

4 Experimental Results 

In this section, we demonstrate the effectiveness of 
the proposed algorithm on real hyperspectral image,the 
popular AVIRIS Indian Pines image. The one-against­
one strategy is employed for C-class classification us­
ing SVM and SVM-CK. To perfonn SVM, we use the 
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Figure 1: Effects of the number of dimensions in the 

transformed domain 

popular tookkit libSVM 1. The AVIRIS sensor gener­
ates 220 bands across the spectral range from 0.2 to 
2.4 JLTn; however, in the experiment, we remove 18 wa­
ter absorbtion bands. This image has spatial resolution 
of 20 m per pixel and spatial dimension 145 x 145. 
It contains 16 ground-truth classes, for each of the 16 
classes, we randomly choose 10% of the labeled sam­
ples for training and the rest 90% for testing accord­
ing to fair and unfair strategies. The parameters of 
SVM and SVM-CK (<;"" ,IL) = (256, 0.3536, 0.7) are 
obtained by ten-fold cross validation and the param­
eters of MLRsubMLL are derived from [8]. The ef­
fects of reduced dimensions on the overall accuracy are 
shown in Fig. l. In this figure, SVM-CK is used as a 
comparison baseline, the proposed algorithms: NASP­
SVM-CK is compared to PCA-SVM-CK. The results 
show that NASP-SVM-CK gave the best overall accu­
racy at the low number of dimensions. 

From Fig. 1, we choose d = 80 which fairly rep­
resents the classification performance of each algo­
rithm, the classification accuracy for each class, the 
overall accuracy, average accuracy, and the K, coef­
ficient are shown in Table I using different clasis­
fiers on the test set. The overall accuracy is com­
puted by the ratio between correctly classified test sam­
ples and the total number of test samples, and the av­
erage accuracy is the mean of the 16 True Positive 
Rates (TPR), and the Cohen-K, coefficient is computed 
by weighting the measure accuracies which shows 
a robust measure of the degree of agreement. In 
most cases, the proposed NASP-SVM-CK outperforms 

Ihttp://www.csie.ntu.edu.tw/-cjlin/libsvrn/ 



Table 1: CLASSIFICATION ACCURACY (%) FOR THE INDIAN PINES IMAGE ON THE TEST SET 

Accuracy SVM MLRsub MLRsubMLL 
Overall 82.61 80.23 89.98 
Average 84.78 70.43 73.15 

'"' 0.8 0.77 0.88 

Groundtruth SVM MLRsub 

MLRsubMLL SVM-CK PCA-SVM-CK 

NAPCA-SVM-CK SP-SVM-CK NASP-SVM-CK 

Figure 2: G roundtruth and classification maps of the In­

dian P ines image 

the original SVM-CK, MLRsubMLL, PCA-SVM-CK, 
NAPCA-SVM-CK, and SP-SVM-CK. Overall, NASP­
SVM-CK provides the best perfonnance especially in 
the extreme case, e.g., class 1, 7, and 9 which has only 
5, 3, and 2 training samples. This is very important in 
hyperspectral image analysis due to costly training data 
collection. The classification maps on labeled pixels ob­
tained from the various algorithms are shown in Fig. 2. 
One can see that by incorporating the contextual infor­
mation, the NASP-SVM-CK algorithm provides a much 
smoother classification map than the other methods. 

5 Conclusions 

DR has been widely used as a preprocessing step for 
hyperspectral image analysis. In this paper, we inves­
tigate DR under the unified framework of graph em­
bedding. By preserving sparsity property in the orig­
inal data, the 11 graph method can outperfonn other 
widely used methods, such as PCA and LDA. In this 
paper, we propose the NASP based DR method to sup­
press the noise effect. In conjunction with the state-of­
the-art hyperspectral image classifier, SVM-CK, where 

SVM-CK PCA NAPCA SP NASP 
93.76 94.66 96.43 95.71 97.73 

92.86 95.47 96.69 97.18 97.89 

0.92 0.93 0.96 0.95 0.97 

RBF kernel is used in the spectral dimension and poly­
nomial kernel for the spatial dimension, the real data 
experiment shows that NASP can significantly improve 
the classification accuracy, compared to SP and other 
widely used DR methods. 
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