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ABSTRACT

Lossless compression of memory dumps from virtual machines that run malware samples is considered with
the goal of significantly reducing archival costs in dynamic-malware-analysis applications. Given that, in
such dynamic-analysis scenarios, malware samples are typically run in virtual machines just long enough to
activate any self-decryption or other detection-avoidance maneuvers, the virtual-machine memory typically
changes little from that of the baseline state, with the difference being attributable in large degree to the
loading of additional executables and libraries. Consequently, delta coding is proposed to compress the current
virtual-machine memory dump by coding its differences with respect to a predicted memory image formed by
loading the same executables and libraries into the baseline memory. Experimental results reveal a significant
improvement in compression efficiency as compared to straightforward delta encoding without such predictive
executable/library loading.
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1. INTRODUCTION

Malware—malicious computer code of all types, in-
cluding viruses, worms, bots, and trojans—is an ever-
increasing threat to personal, corporate, and govern-
ment computing systems alike. Particularly in the
corporate and government sectors, the attribution of
malware—including the identification of the author-
ship of malware as well as potentially the malefac-
tor responsible for an attack—is of growing inter-
est. Such malware attribution is often enabled by
the fact that malware authors build on the work of
others through the use of generators, libraries, and
borrowed code. Determining malware phylogeny—
the evolutionary history of and the derivative rela-
tions between malware—is consequently an endeavor
of increasing importance. In some cases, it may be
possible to simply analyze the source code or binary
executable program of a malware sample; however,
such static analysis is easily defeated by more so-
phisticated code that actively avoids detection. Such
malware often employs self-modifying code (Egele,
Scholte, Kirda, & Kruegel, 2012), as in the case of an
encrypted malware file that self-decrypts upon exe-
cution in memory. Consequently, there is a growing
focus on the dynamic analysis of malware which in-

volves executing a malware sample and determining
the actions it takes after some period of operation
(Egele et al., 2012). In most cases, such dynamic
analysis occurs in a virtual machine, or “sandbox,”
in order to confine the malware to an environment in
which it can do no harm to real systems (Farmer &
Venema, 2005).

In sandbox-driven dynamic analysis of malware, a
virtual machine is typically run starting from some
known, malware-free baseline state. The malware is
injected into the virtual machine, and the machine is
allowed to run for some period of time during which
the malware presumably activates. The machine is
then suspended, and the current machine memory is
dumped to disk. The process may then be repeated
for other malware samples, each time starting from
the baseline state. Subsequent analysis procedures
may then attempt to identify, classify, or otherwise
analyze the malware based on the dumped memory
image.

Stored in raw form on the disk, the dumped mem-
ory file is the same size as the virtual-machine mem-
ory; for virtual machines running modern operating
systems, such memory would likely be no less than
512MB but could be up to several GBs. If the cor-
responding memory dumps are to be retained for re-
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peated analysis—as is likely to be required in order
to determine a phylogeny for a large database of mal-
ware samples—lossless compression of the memory
dumps is necessary to prevent explosive disk usage.
For example, the VirusShare project1 maintains a
database of over 19 million malware samples; run-
ning these in a virtual machine with 512MB of mem-
ory would require of 9 petabytes (PB) of storage to
retain the memory dumps.
In this paper, we develop a scheme for the loss-

less compression of memory dumps resulting from the
repeated execution of malware samples in a virtual-
machine sandbox. Rather than compress each mem-
ory dump individually, we capitalize on the fact that
memory dumps stem from a known baseline virtual-
machine state and code with respect to this baseline
memory. Additionally, to further improve compres-
sion efficiency, we exploit the fact that a significant
portion of the difference between the baseline memory
and that of the currently running machine is the re-
sult of the loading of known executable programs and
shared libraries. Experimental results on a collection
of virtual-machine memory dumps demonstrate a sig-
nificant improvement over the straightforward com-
pression of each memory dump independently. We
detail our proposed compression scheme in the re-
mainder of the text.

2. BACKGROUND

Any number of generic lossless compression algo-
rithms could be applied to a virtual-machine memory-
dump file to significantly reduce its size. Some obvi-
ous choices include algorithms from the Lempel-Ziv
(Ziv & Lempel, 1977, 1978) and Burrows-Wheeler
(Burrows & Wheeler, 1994) families of algorithms, as
implemented by programs such as gzip (LZ77) and
bzip2 (Burrows-Wheeler). However, given the short
amount of time that the virtual machine has typically
been run in a dynamic-malware-analysis scenario—
effectively just enough time for the malware un-
der analysis to activate itself (including any self-
extraction, self-decrypting, or self-decompression)—
it is likely that memory has changed little from the
baseline state. While there may have been a few
new processes started and a few libraries loaded—
along with corresponding memory allocations and
data initializations—overall, the dumped memory file
will likely have most memory locations unchanged
from the baseline machine’s memory. Indeed, Fig. 1
depicts a map of all memory locations that have
changed when an example malware sample is run in
a 512-MB virtual machine; specifically, we see that

1http://virusshare.com/

only 15% of the memory has changed, although we do
observe that the differences between the current and
baseline memories are widely distributed throughout
the entire memory space. In such a situation, delta
encoding—the compression of the differences between
two files—is likely to significantly outperform any
single-file compression approach.

Although there have been a number of lossless
delta-encoding algorithms proposed in the past, per-
haps those that are in the most widespread use are
based on the VCDIFF (Korn, MacDonald, Mogul, &
Vo, 2002) standard. Effectively, the VCDIFF stan-
dard prescribes delta encoding using an LZ77 variant
in which the reference (or “source” dataset), which
is available to both the encoder and the decoder,
prepends the dataset to be encoded (the “target”
dataset), such that LZ77 string matching can refer-
ence into the source dataset. More specifically, the
target dataset is partitioned into non-overlapping tar-
get windows, and each target window is encoded by
prepending a source window and performing LZ77-
style string matching on the concatenated string
starting from the beginning of the target dataset.
The source window can come from either the source
dataset or earlier in the target dataset; since the
VCDIFF standard specifies only a file format, specific
methodology for string matching and window selec-
tion are left to the encoder implementation to deter-
mine. Here, we focus on the open-source xdelta32

implementation of VCDIFF.

The xdelta3 encoder relies on a substantial degree
of similarity between the source and target datasets in
order to outperform the LZ77 compression of the tar-
get dataset alone. As is evident from Fig. 1, we expect
that, in our malware-analysis application, xdelta3

encoding of a virtual-machine memory dump using
the baseline machine’s memory as the source dataset
will result in a compressed file significantly smaller
than that of gzip applied directly to the memory
dump by itself. Indeed, for the specific dataset con-
sidered in Fig. 1, gzip produces a compressed file
of size 139MB, while xdelta3 yields a 25-MB file.
In the next section, we consider steps that may be
taken to improve the performance of xdelta3 in our
malware-analysis application even further.

3. PROPOSED APPROACH

Some of the differences between the memory dump
after a period of malware execution and the start-
ing baseline memory state can be attributed to data
that was effectively created by the various processes,

2http://xdelta.org/
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Figure 1: Map of differences between the baseline
memory map and the current memory map after mal-
ware execution (baseline virtual machine #41, mal-
ware dataset #139992); number of bytes of difference
= 80,661,129 (15.0% of the 512-MB memory). White
= byte unchanged from baseline; black = byte differ-
ent from baseline.

including the malware, running on the system. How-
ever, some of the memory differences are due to the
loading of additional executable and shared-library
files into the system. On Windows-based systems,
such executable programs (EXEs) and dynamic-link
libraries (DLLs) are stored in the Portable Exe-
cutable (PE) format (Microsoft, 2013), a modifica-
tion of Unix’s Common Object File Format (COFF).
We can make the memory of the baseline machine
more closely resemble that of the currently run-
ning machine—thereby increasing the efficiency of
xdelta3 coding—by simulating the loading of these
PEs into the baseline memory, a process that can be
done identically in both the encoder and the decoder.

Specifically, the open-source tool for memory foren-
sics, volatility3 (Ligh, Case, Levy, & Walters,
2014), is used to determine the running EXEs and
loaded DLLs in both the baseline and current mem-
ory dumps. Parsing the process and library lists
produced by volatility, an encoder can determine
which programs and libraries are new to the current
machine memory with respect to the baseline, load
these new PEs into the baseline memory, and finally
use this updated memory as the source for xdelta3
coding of the current memory dump. Detailed opera-
tion of the resulting encoder and decoder is described
below.

3.1 Encoder

The encoder compresses the memory dump (the cur-

rent memory) from the currently running virtual
machine using delta encoding with respect to the
predicted memory, the latter of which is produced

3http://www.volatilityfoundation.org/

by loading new PEs into the baseline virtual ma-
chine’s memory dump (the baseline memory). The
new PEs are those that are in the current memory
but not in the baseline memory. The new PEs are
loaded from the virtual disk which is the virtual hard
drive shared by both the baseline and current vir-
tual machines; the loading is accomplished by copying
virtual-memory pages from the PE file into physical-
memory pages in the baseline memory. More specifi-
cally, the encoder follows the following steps:

1. Run volatility commands pslist and
dlllist on the baseline memory to determine
lists of baseline EXEs and DLLs, respectively.

2. Run volatility commands pslist and
dlllist on the current memory to determine
lists of current EXEs and DLLs, respectively.

3. Parse the EXE/DLL lists to determine the new
PEs that are in the current memory but not in
the baseline memory.

4. To produce the predicted memory from the base-
line memory, for each new PE (EXE or DLL) do:
(a) Determine the ID of the process corre-

sponding to the new PE (for a DLL, this
is the process into which the DLL has been
loaded; for an EXE, it is the process as-
signed to the EXE itself) along with the
base address where the new PE is loaded
into the virtual-memory address space of
the corresponding process.

(b) For the process corresponding to the new
PE, run the volatility command memmap

on the current memory to extract the
virtual-to-physical memory map of the pro-
cess.

(c) Copy the new PE from its corresponding file
on the virtual disk into the baseline mem-
ory; specifically, for each virtual-memory
page in the PE file:

i. If the page is resident in the current
memory, copy the page from the PE
file to the baseline memory using the
virtual-to-physical mapping retrieved
in Step 4(b).

ii. Record the source page location in the
PE file, the destination page location in
physical memory, and the page length
(the page copy information).

5. Output header information, including path-
names of new PEs to load and a list of all page
copies for each PE.

6. Perform xdelta3 coding using the current mem-
ory as the target and the predicted memory as
the source.
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In Step 4(c), we assume that the virtual disk used for
both the baseline as well as the currently running vir-
tual machine is available to the encoder so that it can
access the PEs to perform the page copies. Normally,
this virtual disk will be a file stored at some known
location alongside the baseline-memory and current-
memory dumps. For the VMware virtual machines
used here, the encoder employs the vmware-mount

command to mount the VMDK-format virtual disk
via a loopback device, permitting the encoder to read
PE files from the Windows 7 installation resident on
the virtual disk.

3.2 Decoder

The decoder produces the same predicted memory as
used by the encoder by loading the new PEs into the
baseline memory. While the decoder has access to the
baseline memory, it does not know the current mem-
ory, or, consequently, the virtual-to-physical map of
the processes corresponding to the new PEs. There-
fore, to duplicate the page copies that the encoder
used to produce the predicted memory, the decoder
relies on the list of page copies stored in the header
of the compressed file. Like the encoder, the decoder
loads the new PEs from the virtual-disk file stored
alongside the baseline memory. The specific process
is as follows:

1. Read the header from the compressed file.

2. To produce the predicted memory from the base-
line memory, for each new PE (EXE or DLL) do:

(a) Copy the new PE from its corresponding file
on the virtual disk into the baseline mem-
ory; specifically, for each page copy listed in
the header, do:

i. Copy the corresponding page in the PE
file into the designated location in the
baseline memory.

3. Perform xdelta3 decoding of the current mem-
ory (the target) using the predicted memory as
the source.

3.3 Implementation

Both the encoder and decoder of the proposed ap-
proach, which we call VMMZ, are implemented pri-
marily in C with a small portion written in Perl to
handle parsing of output from volatility. In ad-
dition to dependence on volatility and xdelta3,
VMMZ is built on QccPack4 (Fowler, 2000).

4http://qccpack.sourceforge.net/

4. EXPERIMENTAL

RESULTS

Our test dataset consists of 14 different baseline vir-
tual machines, each possessing 512MB of RAM and
installed with a 32-bit version of Windows 7. Us-
ing the cuckoo malware-analysis sandbox5, each vir-
tual machine was run for approximately 4 minutes
with a malware sample injected into the virtual ma-
chine. Afterwards, the virtual-machine memory was
dumped as a 512-MB file to disk for malware analysis
at some subsequent time. Our test dataset consists
of a total of 67 memory dumps corresponding to 67
different malware samples, with between 3 and 8 dif-
ferent samples being run in each of the 14 baseline
machines. Total storage required for the resulting 67
memory dumps is 33.5GB.

Table 1 tabulates the results of various compres-
sion approaches applied to these memory dumps. The
memory dumps are given a 6-digit number (“File #”)
corresponding to which malware sample was run in
the virtual machine; Table 1 also indicates the num-
ber (“Base #”) of the corresponding baseline machine
which served as the starting point for the malware ex-
ecution.

Table 1 indicates the sizes of files output by var-
ious compression algorithms applied to the virtual-
machine memory dumps. In these results, gzip

is simply applied directly to the memory dump in
question, while the proposed approach (VMMZ) and
xdelta3, both being delta encoders, compress each
memory dump with respect to its corresponding base-
line virtual-machine memory. Table 1 also indicates
the average compressed-file size across all 67 mem-
ory dumps as well as execution times for both en-
coding and decoding. We see that, while the pro-
posed VMMZ approach is slower, it significantly out-
performs the other two compressors in terms of com-
pression: at 34MB, the average file size for VMMZ
is approximately 20% smaller than that of xdelta3
(42MB on average), and 79% smaller than that of
gzip (163MB on average).

5. RELOCATABLE CODE

AND FIXUPS

Typically, PE files are divided into multiple sections,
some of which have special meanings that are recog-
nized by linkers and loaders (Microsoft, 2013). By
convention, these special sections are designated by
known section names in the PE header, for exam-
ple, the .data section (initialized data), the .rdata

5http://cuckoosandbox.org/
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Table 1: Compressed-file sizes and execution times for the proposed algorithm (VMMZ) as well as xdelta3
(XD3) and gzip (GZIP). Results conducted on a 2.1-GHz i7-4600U system with 8GB memory.

Size (MB) Size (MB)
File # Base # VMMZ XD3 GZIP File # Base # VMMZ XD3 GZIP

139992 41 18 25 139 140105 52 14 25 143

140106 41 30 38 150 140390 52 28 38 157

140403 41 41 52 162 140485 52 29 52 158

140537 41 34 44 156 140541 52 13 44 142

140389 45 33 42 160 139997 53 57 42 189

140458 45 12 18 141 140035 53 59 18 190

140484 45 13 20 143 140083 53 25 20 161

139996 46 47 55 179 140150 53 33 55 166

140054 46 46 52 177 140402 53 33 52 166

140515 46 39 44 175 140488 53 61 44 191

140061 47 23 31 157 140516 53 69 31 200

140080 47 29 39 164 140491 54 23 39 150

140126 47 18 24 150 140524 54 31 24 157

140384 47 19 29 156 140544 54 29 29 155

140456 47 23 31 156 140057 55 36 31 161

140534 47 33 41 164 140394 55 32 41 158

140545 47 17 22 149 140494 55 31 22 159

140151 49 31 41 160 140513 55 32 41 159

140522 49 30 41 160 139993 57 36 41 161

140538 49 28 37 157 140399 57 42 37 168

139991 50 50 60 175 140495 57 26 60 155

140032 50 45 55 171 140546 57 31 55 156

140453 50 47 57 173 140395 58 29 57 156

140489 50 49 59 175 140517 58 32 59 158

140514 50 55 66 180 140547 58 32 66 156

140082 51 25 29 161 139995 59 29 29 158

140122 51 13 16 150 140079 59 26 16 152

140154 51 65 73 193 140107 59 30 73 157

140388 51 59 69 188 140127 59 15 69 145

140459 51 59 68 189 140397 59 31 68 158

140490 51 61 69 190 140461 59 28 69 156

140525 51 56 64 187 140520 59 28 64 158

140039 52 15 23 145 140542 59 31 23 159

140058 52 27 37 157

VMMZ XD3 GZIP
Average size (MB) 34 42 163

Encoding time (sec) 172 8.94 14.7

Decoding time (sec) 22.7 1.06 3.41
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section (read-only initialized data), the .text sec-
tion (executable code), and the .reloc section (im-
age relocations). While sections hold special meaning
for linkers and loaders, the proposed VMMZ com-
pression framework as described above is agnostic to
section type, loading every physically resident page
from every section into the baseline memory. How-
ever, in the case of relocatable executable code, such
section-agnostic loading causes some compression in-
efficiency.

Specifically, PEs are rarely loaded at the virtual-
memory addresses for which they are compiled, re-
quiring a .reloc section that lists all the memory
addresses (or “fixups”) in the executable code (the
.text section) which must be relocated during load-
ing before the PE is executed. In our delta-encoding
application, performing these fixups when loading a
PE into baseline memory would result in a predicted
memory that would be closer to the current mem-
ory, resulting in improved xdelta3 encoding. Un-
fortunately, while the decoder has access to the fix-
ups in the .reloc section of the PE file, these fixups
are expressed in terms of virtual-memory addresses
which must be translated to physical-memory ad-
dresses during loading. Permitting the decoder to
be able to perform these fixups would consequently
require storing the virtual-to-physical mapping for
the fixups in the header of the compressed file. Our
empirical investigations have revealed that this ad-
ditional header overhead would likely outweigh any
improvement in xdelta3 encoding that would re-
sult from including the fixups in the predicted mem-
ory. Consequently, our proposed VMMZ coder loads
executable-code .text sections as is without perform-
ing the fixups that would be done in a real system by
a linker/loader.

6. CONCLUSIONS

In this paper, we have considered the lossless com-
pression of virtual-machine memory dumps for a tar-
get application of dynamic malware analysis. Typi-
cally, in such dynamic analysis, malware samples are
run in a virtual machine just long enough to activate;
consequently, memory dumps from the currently run-
ning virtual machine are substantially identical to
that of the baseline machine, with the difference be-
ing attributable in a large degree to the loading of
various executable programs and dynamically linked
libraries. By duplicating the loading of these exe-
cutables and libraries into the baseline memory, our
proposed approach produces a prediction of the cur-
rent memory from which delta encoding is performed,
resulting in a significant improvement in compression

performance over straightforward delta coding alone.
In experimental results for a body of malware sam-
ples, the proposed approach outperformed the widely
used xdelta3 delta coder by approximately 20% and
the popular generic gzip coder by 79%.
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