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Abstract

The behavior under additive noise of the redundant discrete wavelet transform, a frame expansion that is essentially an
undecimated discrete wavelet transform, is studied. Known prior results in the form of inequalities bound distortion
energy in the original signal domain from additive noise in frame-expansion coefficients. In this paper, a more precise
relationship between RDWT-domain and original-signal-domain distortion is developed. Specifically, it is determined
that the contribution to distortion in the original signal domain from white noise in a single RDWT subband depends
only on the decomposition scale at which the subband resides. Furthermore, the total noise distortion due to all
subbands is found to be an equality rather than a bounding relationship involving frame bounds, which are shown, in
fact, to widen as the number of decomposition scales increases.

1. Introduction
Linear transforms and expansions have a long history of serving as fundamental tools in the field of signal
processing. Very often, it is necessary in signal-processing applications to be able to calculate distortion
energy in the original signal domain from an equivalent quantity in the transform domain. That way, signal-
processing operations can be performed in the transform domain with known effects in the original signal
domain. For this reason, orthonormal sets are widely used, since, when the transform takes the form of an
expansion using an orthonormal basis, Parseval’s theorem guarantees

∥∥x
∥∥2

=
∥∥X
∥∥2
, (1)

or that the energy of the original signal x can be determined from that of its transform X .
However, the constraints of orthonormal expansion sets can sometimes be too restrictive for some signal-

processing applications. When one widens consideration to more general expansions, the increased func-
tionality and flexibility unfortunately often comes at the cost of an exact energy relationship as above.
Instead, one often has merely a bounding relationship in the form of

A
∥∥x
∥∥2 ≤

∥∥X
∥∥2 ≤ B

∥∥x
∥∥2 (2)

that frames the energy in one domain with respect to that of the other domain for some constants A > 0 and
B <∞. Expansions with such energy bounds are hence known as frame expansions.

One of the more useful types of expansions which are more general than orthonormal sets are overcom-
plete, and thereby redundant, transforms. With redundancy, greater functionality often becomes possible.
For instance, redundant transforms provide greater robustness to added noise and quantization [1–3] as well
as increased numerical stability [1]. In addition, the redundancy can produce shift invariance, which can
facilitate, among other tasks, feature detection [4, 5] and motion estimation [6–8].
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In this paper, we focus on a specific redundant frame expansion known as the redundant discrete wavelet
transform (RDWT), which is essentially an undecimated version of the discrete wavelet transform (DWT)
ubiquitous to modern signal-processing applications. Since it is a frame expansion, the RDWT has energy
bounds as in (2). As the initial contribution of this paper, we determine values for the frame-bound constants
A and B assuming that an orthonormal filter pair underlies the RDWT. Then, as the primary contribution of
this paper, we analyze the performance of the RDWT under additive noise. Our intuition concerning frames
leads us to expect that an energy-bounding relationship would exist to describe the effect of additive noise.
However, the somewhat unexpected result of our noise analysis is an exact relationship between added noise
in the RDWT domain and its corresponding distortion energy in the original signal domain. That is to say,
even though the RDWT is a highly redundant frame expansion, we can determine exactly the variance (i.e.,
expected distortion energy per sample) in the original signal domain of noise added in the RDWT domain.
The most important aspect of our results is a per-subband noise relationship; that is, the contribution to the
distortion in the original signal domain from noise in a single RDWT subband is found to depend only on
the decomposition scale at which the subband resides and to be independent of that of other subbands.

The remainder of this paper is organized as follows. We present a number of preliminary mathematical
concepts in Sec. 2 in which we briefly overview frame theory and known results concerning resilience of
frames to added noise. Next, in Sec. 3, we describe the RDWT in detail. The main contributions of the
paper are presented in Sec. 4—specifically, we derive frame bounds for the RDWT in Sec. 4.1 and analyze
noise performance of the RDWT in Sec. 4.2. We present some considerations of a largely pragmatic nature
in Sec. 5 in which we discuss the separable 2D RDWT and RDWTs based on biorthogonal filters, our main
results having been derived for 1D RDWTs using orthonormal filters. Finally, we make some concluding
remarks in Sec. 6.

2. Background
2.1 Mathematical Preliminaries and Notation

Consider a Hilbert spaceH. Throughout this paper, we will focus our attention on discrete spaces, either
H = `2(Z), the space of square-summable sequences, or H = CN , the N -dimensional complex space. We
define the inner product in H to be 〈x, y〉 =

∑
k x[k]y∗[k], and the vector norm to be ‖x‖ =

√
〈x, x〉 =√∑

k |x[k]|2, where x, y ∈ H, and α∗ denotes the complex conjugate of α ∈ C.
For x ∈ `2(Z), the discrete-time Fourier transform (DTFT), x̂(ω) is defined as

x̂(ω) =
∞∑

k=−∞
x[k]e−iωk, (3)

where i =
√
−1. Parseval’s theorem for the DTFT is

∞∑

k=−∞

∣∣x[k]
∣∣2 =

1

2π

∫ π

−π

∣∣x̂(ω)
∣∣2 dω, (4)

or, in terms of norms,
‖x‖2 = ‖x̂‖2 , (5)

where the norm in the frequency domain, ‖x̂‖2, is defined as the right side of (4).

2.2 Frames
The following overview of frame theory summarizes discussion from [1, 2, 9]. A family of vectors

Ψ = {ψn}n∈I ⊂ H is called a frame if there exist A > 0 and B <∞ such that

A
∥∥x
∥∥2 ≤

∥∥X
∥∥2 ≤ B

∥∥x
∥∥2
, ∀x ∈ H, (6)
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where I is a countable index set, X ∈ `2(I) such that X[n] = 〈x, ψn〉, and

`2(I) =
{
X ∈ C|I| :

∥∥X
∥∥2
<∞

}
.

Unless otherwise noted, we subsequently assume that frame Ψ is uniform, i.e., that ‖ψn‖ = 1, ∀n ∈ I [10].
A and B in (6) are called the frame bounds.

We define the frame operator, F , associated with frame Ψ as the mapping fromH to `2(I),

Fx = X =
{
〈x, ψn〉

}
n∈I . (7)

The adjoint, F ∗, of F is the mapping from `2(I) toH defined as

F ∗X =
∑

n∈I
X[n]ψn (8)

for X ∈ `2(I). In the case that H = CN , then `2(I) = CM for some M ≥ N . In this case, we define the
redundancy of a frame as the ratio r = M/N .

The dual frame, Ψ̃, of Ψ is defined as Ψ̃ =
{
ψ̃n
}
n∈I where

ψ̃n = (F ∗F )−1 ψn, ∀n ∈ I. (9)

It can be shown [1, 9] that the dual frame is itself a frame with bounds B−1 and A−1; that is,

1

B
‖x‖2 ≤

∑

n∈I
|〈x, ψ̃n〉|2 ≤

1

A
‖x‖2 , ∀x ∈ H. (10)

The frame operator and its adjoint associated with dual frame Ψ̃ are F̃ and F̃ ∗, respectively. We note that,
even if the frame Ψ is uniform, the dual frame Ψ̃ may not be. In fact, it can be shown that

1

B2
≤
∥∥∥ψ̃n

∥∥∥
2
≤ 1

A2
, ∀n ∈ I (11)

(e.g., see App. I-B of [2]).
If the two frame bounds are equal, A = B, the frame is called a tight frame. In a tight frame,

∥∥X
∥∥2

= A
∥∥x
∥∥2
. (12)

Additionally, the vectors of the dual frame are

ψ̃n =
1

A
ψn. (13)

For a tight frame inH = CN , we have that the redundancy is given by the frame bound; i.e., r = A. A tight
frame becomes orthonormal when A = 1, in which case, there is no redundancy (r = 1).

2.3 Frame Expansion, Reconstruction, and Additive Noise
Given a frame Ψ and its dual Ψ̃, any x ∈ H can be expanded as

x = F̃ ∗X =
∑

n∈I
X[n]ψ̃n, (14)
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where the expansion coefficients are X[n] = (Fx)n = 〈x, ψn〉. In the case of a tight frame, we have

x =
1

A

∑

n∈I
〈x, ψn〉ψn. (15)

We note that, given a set of coefficients X ∈ `2(I), the process of reconstructing x ∈ H is not unique;
in fact, frame operator F has an infinite number of left inverses [9]. However, the reconstruction given by
(14), the so-called dual-frame or pseudo-inverse [9] reconstruction, is special in that it provides the optimal
least-squares reconstruction in the event of corruption of the expansion coefficients with noise [11]. That is,
if Y = Fy and Y ′ = Y + X , where X is a noise signal, then ‖Fy′ − Y ′‖2 is minimized if we reconstruct
y as y′ = F̃ ∗Y ′ = F̃ ∗Y + F̃ ∗X as specified in (14) [11].

One of the key benefits of the redundancy offered by a frame expansion lies precisely in the robustness
of the dual-frame reconstruction to added noise. This property has been studied extensively in the past, e.g.,
[1–3]. The following theorem, due to Goyal et al. [2], embodies the resilience of frame expansions to added
noise assuming a finite-dimensional spaceH = CN .

Theorem 1 Given a uniform frame Ψ ⊂ H = CN , let X ∈ CM be zero-mean white noise such that

E
[
X[n]X∗[m]

]
=

{
0, n 6= m,

σ2, n = m,
(16)

for all n,m ∈ I. Then
1

B2
E
[∥∥X

∥∥2
]
≤ E

[∥∥x
∥∥2
]
≤ 1

A2
E
[∥∥X

∥∥2
]
, (17)

where x = F̃ ∗X ∈ CN is the dual-frame reconstruction of (14).

Proof : See Proposition 1 of [2].

Corollary 1 In the case of a tight frame, Theorem 1 becomes

E
[∥∥x

∥∥2
]

=
1

A2
E
[∥∥X

∥∥2
]
. (18)

Remark: If we observe that, since X ∈ CM ,

E
[∥∥X

∥∥2
]

= Mσ2, (19)

then (17) becomes
Mσ2

B2
≤ E

[
‖x‖2

]
≤ Mσ2

A2
. (20)

In the case of a tight frame, we then have

E
[
‖x‖2

]
=
Mσ2

A2
=
Nσ2

r
. (21)

From this last equation, we see how frames provide robustness to added noise—the greater the redundancy
r of the frame, the less noise energy E

[
‖x‖2

]
will result in the original signal domain from added noise

in the domain of the frame expansion. If the frame is not tight, then the amount of noise reduction is not
known exactly but is bounded as indicated in (20). However, we are guaranteed that some noise reduction
occurs due to redundancy even for non-tight frames, since A > 1 for redundant frames [9].
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2.4 The Discrete Wavelet Transform and the Discrete-Time Wavelet Series
In this section, we present a few final background ideas—namely, mathematical results concerning the

DWT and the related discrete-time wavelet series (DTWS)—before turning our attention to the RDWT in
the next section. Suppose h, g ∈ `2(Z) are the scaling and wavelet filters, respectively, of an orthonormal
DWT. The following are well-known properties of h and g (see, e.g., Chap. 5 of [12]):

∑

k

h[k] =
√

2, (22)

∑

k

g[k] = 0, (23)

∑

k

h[2k] =
∑

k

h[2k + 1], (24)

g[k] = ±(−1)kh[K − k], (25)

for some odd-valued integer K. Additionally, perfect reconstruction dictates that the filters are power com-
plementary1 such that ∣∣∣ĥ

(
2λω

)∣∣∣
2

+
∣∣∣ĝ
(

2λω
)∣∣∣

2
= 2, ∀λ ∈ Z, ∀ω ∈ R. (26)

It is well-known (e.g., [9, 14]) that the scaling and wavelet filters h and g from an orthonormal DWT—
which is an expansion system for L2(R)—can also be employed to implement a DTWS, an expansion
system for `2(Z). In this case, an iterated, two-channel filter bank expands x ∈ `2(Z) using the orthonormal
basis sequences, {{

φJ [k − 2Jn]
}
n∈Z ,

{
ψj [k − 2jn]

}
1≤j≤J, n∈Z

}
, (27)

where J is depth of the filter-bank tree. The basis sequences are defined in the frequency domain as [9, 14]

φ̂j(ω) =

j−1∏

λ=0

ĥ(2λω), (28)

ψ̂j(ω) = ĝ(2j−1ω)

j−2∏

λ=0

ĥ(2λω). (29)

Since the DTWS basis is orthonormal if h and g come from an orthonormal DWT, we have
∥∥∥φj
∥∥∥

2
=
∥∥∥φ̂j
∥∥∥

2
= 1, (30)

∥∥∥ψj
∥∥∥

2
=
∥∥∥ψ̂j

∥∥∥
2

= 1. (31)

In the next section, we briefly overview the RDWT before arriving at the main contribution of this paper, a
noise analysis of the RDWT, which follows in Sec. 4.

3. The Redundant Discrete Wavelet Transform
The RDWT was originally developed [15, 16] as a discrete approximation to the continuous wavelet trans-
form. Subsequent formulations [17, 18] realized that removal of the downsampling operation from the
traditional critically sampled DWT would produce an overcomplete representation with shift invariance,
since the well known shift variance of the DWT arises from its use of downsampling, while the RDWT is

1The usual definition [13] of power complementary is for λ = 0, but this more general definition clearly is valid for any λ ∈ Z.
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shift invariant since the spatial sampling rate is fixed across scale. As a result, the size of each subband in
an RDWT is the exactly the same as that of the input signal, facilitating a number of applications such as
feature detection [4, 5], signal denoising [19, 20], motion estimation [6–8], and watermarking [21].

The RDWT2 has a long history, having been independently discovered a number of times and given
a number of different names, including the algorithme à trous [15, 16], the undecimated DWT (UDWT)
[20], the overcomplete DWT (ODWT) [7], the shift-invariant DWT (SIDWT) [22], and discrete wavelet
frames (DWF) [5]. There are several ways to implement the RDWT, and several ways to represent the re-
sulting overcomplete set of coefficients. The original implementation was in form of the algorithme à trous
[15, 16], which, in essence, removes the downsampling operator from the ubiquitous Mallat implementation
[23] of the DWT. In this implementation, instead of signal downsampling, the filter responses themselves
are upsampled, thereby inserting “holes” (trous in French) between nonzero filter taps. Mallat [24] inde-
pendently proposed the à trous implementation, while the à trous implementation also arose in the form of
iterated, nonsubsampled filter banks [14, 25]. Below, we present an overview of the mathematical details of
the à trous implementations of the RDWT; for greater detail, refer to [9, 17].

An RDWT is defined in terms of an underlying DWT. Let h ∈ `2(Z) and g ∈ `2(Z) be the scaling and
wavelet filters, respectively, of an orthonormal DWT. In essence, the à trous implementation of the RDWT
removes the decimation operations from Mallat’s algorithm [23] for the critically sampled DWT. To retain
the proper multiresolution characteristic of the transform, the scaling and wavelet filters must be adjusted
according to each scale. Specifically, define the upsampling operator as

x[k] ↑ 2 =

{
x[k/2], k even,
0, k odd,

(32)

and the scaling and wavelet filters at scale j + 1 as

hj+1[k] = hj [k] ↑ 2, (33)

gj+1[k] = gj [k] ↑ 2, (34)

where

h0[k] = h[k], (35)

g0[k] = g[k]. (36)

In the frequency domain, the filters are then

ĥj(ω) = ĥ0

(
2jω
)

(37)

ĝj(ω) = ĝ0

(
2jω
)
. (38)

The RDWT of x ∈ H, where H is `2(Z) or CN , is implemented recursively with the filter-bank opera-
tions

cj+1[k] = hj [−k] ∗ cj [k], (39)

dj+1[k] = gj [−k] ∗ cj [k], (40)

where c0 = x and j = 0, . . . , J − 1. In the case of a finite-dimensional signal x ∈ H = CN , the ∗ denotes
circular convolution; otherwise, the ∗ is discrete-time convolution. The J-scale RDWT is the collection of
subbands resulting from the recursive filtering operations, i.e.,

X(J) = RDWTJ

[
x
]

(41)

=
[
cJ dJ dJ−1 · · · d1

]
. (42)

2The “RDWT” moniker comes from [12].
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If H = CN , then X(J) ∈ CM , where M = (J + 1)N . Otherwise, if H = `2(Z), then X(J) ∈ `2(I). We
note that, in either case,

∥∥∥X(J)
∥∥∥

2
=
∥∥∥cJ
∥∥∥

2
+

J∑

j=1

∥∥∥dj
∥∥∥

2
. (43)

In order to reconstruct x in the original signal domain given X (J) in the RDWT domain, one recursively
performs the following synthesis operation

cj [k] =
1

2

(
hj [k] ∗ cj+1[k] + gj [k] ∗ dj+1[k]

)
. (44)

The RDWT is a frame expansion, a fact we will verify below by calculating its frame bounds. The à trous
synthesis procedure of (44) is the dual-frame reconstruction, (14), for this frame.

Assuming that H = `2(Z), we can express the RDWT-filtering operations in the Fourier-frequency
domain. That is, in the Fourier domain, (39), (40), and (44) become

ĉj+1(ω) = ĥ∗j (ω)ĉj(ω), (45)

d̂j+1(ω) = ĝ∗j (ω)ĉj(ω), (46)

ĉj(ω) =
1

2

(
ĥj(ω)ĉj+1(ω) + ĝj(ω)dj+1(ω)

)
, (47)

respectively. If we expand the recursion of (45)-(46) and invoke (37) and (38), we result in

ĉj(ω) =

[
j−1∏

λ=0

ĥ∗j (ω)

]
x̂(ω)

=

[
j−1∏

λ=0

ĥ∗0(2λω)

]
x̂(ω), (48)

d̂j(ω) = ĝ∗j−1(ω)

[
j−2∏

λ=0

ĥ∗j (ω)

]
x̂(ω)

= ĝ∗0
(
2j−1ω

)
[
j−2∏

λ=0

ĥ∗0(2λω)

]
x̂(ω). (49)

We note that an alternative implementation of the RDWT was independently proposed by Shensa [17]
and Beylkin [18]. In essence, this implementation employs filtering and downsampling as in the usual
critically sampled DWT; however, all “phases” of downsampled coefficients are retained and arranged as
“children” of the signal that was decomposed. The process is repeated on all the lowpass bands to achieve
multiple decomposition scales that form a “tree” of decompositions. Although this alternative tree-based
RDWT is a useful and common implementation in practice, we will focus on the à trous implementation
here since it is much more amenable to mathematical analysis and derivation, a characteristic we exploit as
we study the noise properties of the RDWT in the next section.

4. Noise Properties of the RDWT
In this section, we consider the effect of additive random noise in the RDWT domain. Specifically, we
consider white-noise signals X in the RDWT domain and reconstruct x with the à trous synthesis algorithm
of (44). We will find that, like all redundant frames, the RDWT exhibits a certain resilience to added noise.
However, we will find that the RDWT permits a characterization of this resilience much stronger than that
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indicated by Theorem 1, which guarantees noise reduction, but leaves us unsure as to how much. We first
derive frame bounds for the RDWT operating in `2(Z) in the next section before presenting our central
results concerning noise and the RDWT in Sec. 4.2.

4.1 Frame Bounds of the RDWT
Lemma 1 A single-scale RDWT operating in `2(Z) is a tight-frame expansion with frame boundsA = B =
2.

Proof : Consider x ∈ `2(Z) with single-scale RDWT X (1) = RDWT1 [x]. Thus,

X(1) =
∥∥c1

∥∥2
+
∥∥d1

∥∥2 (50)

=
∥∥∥ĉ1

∥∥∥
2

+
∥∥∥d̂1

∥∥∥
2

(51)

=
1

2π

∫ π

−π

∣∣∣ĉ1(ω)
∣∣∣
2
dω +

1

2π

∫ π

−π

∣∣∣d̂1(ω)
∣∣∣
2
dω. (52)

From (45) and (46), we have

∥∥∥X(1)
∥∥2

=
1

2π

∫ π

−π

[∣∣∣ĥ0(ω)
∣∣∣
2

+
∣∣∣ĝ0(ω)

∣∣∣
2
] ∣∣∣x̂(ω)

∣∣∣
2
dω (53)

= 2
∥∥x̂
∥∥2 (54)

= 2
∥∥x
∥∥2
, (55)

since h and g are power-complementary (26). Comparing to (12), we have that the frame bounds for the
single-scale RDWT are A = B = 2.

Lemma 2 If X(J) is the J-scale RDWT of x ∈ `2(Z), then

∥∥∥X(J)
∥∥∥

2
=
∥∥∥cJ−1

∥∥∥
2

+
∥∥∥X(J−1)

∥∥∥
2
. (56)

Proof : See App. A.

Theorem 2 A J-scale RDWT operating in `2(Z) is a frame expansion with frame bounds A = 2 and
B = 2J .

Proof : By the definition of a frame, it is sufficient to show that the frame bounds exist to show that the
RDWT is a frame. To establish frame bounds, we use a proof by induction. The inductive basis is given by
Lemma 1. The inductive step is as follows. Suppose that for J ≥ 2, we have

2
∥∥∥x
∥∥∥

2
≤
∥∥∥X(J−1)

∥∥∥
2
≤ 2J−1

∥∥∥x
∥∥∥

2
(57)

for XJ−1 =
[
cJ−1 dJ−1 dJ−2 · · · d1

]
, where X(J−1) is the (J − 1)-scale RDWT of x. Then, for the

J-scale RDWT, we have from Lemma 2 and (57),
∥∥∥X(J)

∥∥∥
2

=
∥∥∥cJ−1

∥∥∥
2

+
∥∥∥X(J−1)

∥∥∥
2

(58)

≥
∥∥∥X(J−1)

∥∥∥
2

(59)

≥ 2
∥∥x
∥∥2
, (60)
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which establishes inductively that the lower bound A satisfies

A ≥ 2. (61)

For the upper bound, we note that, from (43) and (57), we have

∥∥cJ−1

∥∥2
=
∥∥X(J−1)

∥∥2 −
J−1∑

j=1

∥∥dj
∥∥2

≤ 2J−1
∥∥x
∥∥2 −

J−1∑

j=1

∥∥dj
∥∥2

≤ 2J−1
∥∥x
∥∥2
. (62)

From Lemma 2, (57), and (62), we have
∥∥∥X(J)

∥∥∥
2

=
∥∥∥cJ−1

∥∥∥
2

+
∥∥∥X(J−1)

∥∥∥
2

(63)

≤ 2J−1
∥∥x
∥∥2

+ 2J−1
∥∥x
∥∥2 (64)

≤ 2J
∥∥x
∥∥2
, (65)

which establishes that the upper bound B satisfies

B ≤ 2J . (66)

In App. B, we show that the bounds of A = 2 and B = 2J are the tightest possible frame bounds since we
can find sequences of x ∈ `2(Z) that asymptotically meet these bounds.

4.2 Additive Noise in the RDWT Domain
In this section, we consider zero-mean, white-noise signals in the RDWT domain. Specifically, we

define a zero-mean white-noise signal X ∈ C∞ with variance σ2 as

E
[
X[n]

]
= 0, (67)

E
[
X[n]X∗[m]

]
=

{
0, n 6= m,

σ2, n = m.
(68)

Theorem 3 Suppose we have X (J) ∈ C∞ such that

X(J) =
[
cJ dJ dJ−1 · · · d1

]
, (69)

where cJ , dj ∈ C∞. Suppose a single subband of X (J) consists of zero-mean white noise of variance σ2

while all the other subbands are zero. Then, the reconstruction x due to the à trous synthesis algorithm of
(44) is zero-mean noise with variance

E
[∣∣x[k]

∣∣2
]

=
σ2

4j
, (70)

where j is the scale of the subband in which the noise resides.
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Proof : Establishing that x has zero mean is straightforward, so we will focus on the variance. The noise in
X will be in either cj or dj while all the other subbands are zero. Let us consider first the case that noise is
in cj . Consequently, we have from (44),

x[k] = c0[k] =

(
1

2

)j
h0[k] ∗ h1[k] ∗ · · · ∗ hj−1[k] ∗ cj [k]. (71)

The power spectral density of the output of the synthesis operation will be

Sx(ω) =

∣∣∣∣∣

(
1

2

)j
ĥ0(ω)ĥ1(ω) · · · ĥj−1(ω)

∣∣∣∣∣

2

σ2 (72)

=
σ2

4j

∣∣∣∣∣

j−1∏

λ=0

ĥ0(2λω)

∣∣∣∣∣

2

, (73)

since the power spectral density of cj is σ2, and ĥj(ω) = ĥ0(2jω) from (37). Invoking (28), we have

Sx(ω) =
σ2

4j

∣∣∣φ̂j(ω)
∣∣∣
2
, (74)

where φj is a basis vector of the DTWS underlying the RDWT. The variance of x is then

E
[∣∣x[k]

∣∣2
]

=
1

2π

∫ π

−π
Sx(ω) dω (75)

=
σ2

2π4j

∫ π

−π

∣∣∣φ̂j(ω)
∣∣∣
2
dω (76)

=
σ2

4j

∥∥∥φ̂j
∥∥∥

2
(77)

=
σ2

4j
, (78)

where the last equality is due to (30). Thus, if the noise is in cj , we have (70).
For dj , the proof is similar. In this case, we have from (44),

x[k] =

(
1

2

)j
h0[k] ∗ h1[k] ∗ · · · ∗ hj−2[k] ∗ gj−1[k] ∗ dj [k], (79)

while the power spectral density is

Sx(ω) =
σ2

4j

∣∣∣∣∣ĝ0(2j−1ω)

j−2∏

λ=0

ĥ0(2λω)

∣∣∣∣∣

2

(80)

from (37) and (38). Invoking (29), we have

Sx(ω) =
σ2

4j

∣∣∣ψ̂j(ω)
∣∣∣
2
. (81)
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The variance of x is then

E
[∣∣x[k]

∣∣2
]

=
1

2π

∫ π

−π
Sx(ω) dω (82)

=
σ2

2π4j

∫ π

−π

∣∣∣ψ̂j(ω)
∣∣∣
2
dω (83)

=
σ2

4j

∥∥∥ψ̂j
∥∥∥

2
(84)

=
σ2

4j
, (85)

where the last equality is due to (31). Thus, if the noise is in dj , we have (70).

Theorem 4 Suppose X(J) ∈ C∞ is a zero-mean, white-noise signal with variance σ2. That is, suppose
X(J) consists of mutually uncorrelated noise in all subbands cJ , dJ , . . . , d1. Then, the reconstruction x
from (44) is zero-mean noise with variance

E
[∣∣x[k]

∣∣2
]

=
σ2

3

[
1 + 2

(
1

4

)J]
. (86)

Proof : Because the noise in a given subband is uncorrelated from that in the other subbands, the output of
the synthesis operation (44) for that subband will be uncorrelated from the synthesis outputs for the other
subbands. Thus, the total variance of the output is the sum of the output variances due to each individual
subband as given by Theorem 3. Consequently, we have

E
[∣∣x[k]

∣∣2
]

= σ2

(
1

4

)J
+ σ2

J∑

j=1

(
1

4

)j
. (87)

Using the geometric-series theorem,

∞∑

n=m

rn =
rm

1− r , ∀r, |r| < 1, (88)

we have

E
[∣∣x[k]

∣∣2
]

= σ2

(
1

4

)J
+ σ2

∞∑

j=1

(
1

4

)j
− σ2

∞∑

j=J+1

(
1

4

)j

= σ2

(
1

4

)J
+
σ2

3

[
1−

(
1

4

)J]

=
σ2

3

[
1 + 2

(
1

4

)J]
. (89)

Corollary 2 For zero-mean, white-noise signalX (J) with J large, the variance of x is approximately σ2/3.

Proof : This result is a direct consequence of taking the limit as J →∞ of (86).
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4.3 Discussion
Strictly speaking, Theorem 1 applies only to finite-dimensional spaces CN , whereas the frame bounds

in Sec. 4.1 were derived assuming `2(Z), and the noise analysis of Sec. 4.2 concerned white-noise signals in
C∞. If we ignore for the moment these space differences, Theorem 1 would suggest that the noise variance
(expected energy per signal sample) in the original signal domain for white-noise X (J) with variance σ2 is
bound as

Mσ2

4JN
≤ 1

N
E

[∥∥∥x
∥∥∥

2
]
≤ Mσ2

4N
, (90)

assuming x ∈ CN , X(J) ∈ CM , and x is reconstructed from X (J) with the à trous synthesis procedure of
(44). Since, for a J-scale RDWT, M = (J + 1)N , we have

(J + 1)σ2

4J
≤ 1

N
E

[∥∥∥x
∥∥∥

2
]
≤ (J + 1)σ2

4
. (91)

We note that (91) suggests a limited ability to predict the effect in the original signal domain of noise
added in the RDWT domain, particularly as J becomes large. This observation conforms to our intuition
concerning frames—since the frame bounds given by Theorem 2 widen as J increases, we expect to be able
to predict energy from one domain to the other with decreasing precision.

However, as it turns out, we can make a much stronger characterization of the noise variance in the
original signal domain than we are led to believe from the above discussion. Corollary 2 suggests that, rather
than being bound by ever widening bounds, the noise variance actually approaches σ2/3 as J increases, with
a more accurate result given by Theorem 4.

5. Other Considerations
In this section, we briefly consider several issues of practical relevance. Since wavelet transforms are widely
used in image-processing applications, and the RDWT has been used to provide shift invariance for such
applications [6, 8], we first generalize the above results to separable 2D RDWTs. Then, as biorthogonal
filters are often used in practice in order to increase filter-design freedom (e.g., to obtain linear phase),
we consider how the assumption of biorthogonality, rather than orthonormality, affects the above results.
Finally, we reconsider the assumption that the RDWT frame is uniform, since, in certain practical settings,
it is desired that the lowpass gain remain unity over all scales.

5.1 The Separable 2D RDWT
In order to provide a redundant transform for 2D image signals, the 1D RDWT as described in Sec. 3

can implement a 2D RDWT if the analysis and synthesis procedures are deployed in a separable fashion,
that is, first along the rows of an image, and then along the columns, or vice versa. In this case, the à trous
analysis procedure of (39) and (40) becomes

cj+1[k, l] = hj [−k] ∗ hj [−l] ∗ cj [k, l], (92)

dHj+1[k, l] = gj [−k] ∗ hj [−l] ∗ cj [k, l], (93)

dVj+1[k, l] = hj [−k] ∗ gj [−l] ∗ cj [k, l], (94)

dDj+1[k, l] = gj [−k] ∗ gj [−l] ∗ cj [k, l], (95)
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where dH , dV , and dD are the horizontal, vertical, and diagonal subbands, respectively, of the 2D RDWT
decomposition. The synthesis procedure of (44) becomes

cj [k, l] =
1

4

[
hj [k] ∗ hj [l] ∗ cj+1[k, l]+

gj [k] ∗ hj [l] ∗ dHj+1[k, l] + hj [k] ∗ gj [l] ∗ dVj+1[k, l]

+gj [k] ∗ gj [l] ∗ dDj+1[k, l]
]
. (96)

From these operations, it is straightforward to generalize the discussion of Sec. 4.2 to the separable 2D
transform. Specifically, the single-subband result of Theorem 3 becomes

E
[∣∣x[k]

∣∣2
]

= σ2

(
1

16

)j
, (97)

while the full-transform result of Theorem 4 becomes

E
[∣∣x[k]

∣∣2
]

=
σ2

5

[
1 + 4

(
1

16

)J]
. (98)

5.2 The RDWT with Biorthogonal Filters
The à trous RDWT can be implemented with biorthogonal, rather than orthogonal, filters. In this case,

we have primary scaling and wavelet filters h and g, respectively, as well as dual scaling and wavelet filters,
h̃ and g̃, respectively. The à trous analysis procedure of (39) and (40) uses the primary filters h and g while
the synthesis algorithm of (44) is modified to employ the dual filters h̃ and g̃ to become

cj [k] =
1

2

(
h̃j [k] ∗ cj+1[k] + g̃j [k] ∗ dj+1[k]

)
. (99)

In the case of biorthogonal filters, the derivation in the proof of Theorem 3 is modified slightly such that ̂̃h0

and ̂̃g0 replace ĥ0 and ĝ0, and we end up with

E
[∣∣x[k]

∣∣2
]

= σ2

(
1

4

)j ∥∥∥φ̃j
∥∥∥

2
, (100)

for noise in cj , and

E
[∣∣x[k]

∣∣2
]

= σ2

(
1

4

)j ∥∥∥ψ̃j
∥∥∥

2
, (101)

for noise in dj . However, we fail to establish that either is σ2/4j since, generally, φ̃j and ψ̃j do not simultane-
ously have unit norm unless the corresponding DTWS basis is strictly orthonormal rather than biorthogonal.

All is not lost however. If the biorthogonal system is “near-orthonormal,” or “snug,” then
∥∥∥φ̃j
∥∥∥

2
≈
∥∥∥ψ̃j

∥∥∥
2
≈ 1, (102)

so that we very nearly achieve the result promised by Theorem 3. Near-orthonormal systems are fre-
quently encountered in practice; for example, the 9-7 biorthogonal basis [26, 27] used ubiquitously in image-
processing and other applications is very near to being orthonormal. For this system,

∥∥∥φ̃
∥∥∥

2
=
∑

k

∣∣h̃[k]
∣∣2 ≈ 0.98295286, (103)

∥∥∥ψ̃
∥∥∥

2
=
∑

k

∣∣h[k]
∣∣2≈ 1.04043553, (104)
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Table 1: Empirical evaluation of the results of Theorems 3 and 4 for RDWTs with orthonormal and biorthog-
onal filters. “Theory” is value predicted by Theorem 3 for individual subbands, or by Theorem 4 for the
entire signal. “Actual” is value from experiments run for a 5-scale RDWT on a white-noise signal of length
100,000 with zero mean and unit variance, with results averaged over 1000 trials. “D4” is the Daubechies
length-4 orthonormal filter [28]; “CDF-9/7” is the Cohen-Daubechies-Feauveau length-9/7 biorthogonal
filters [26, 27].

D4 CDF-9/7
Subband Theory Actual % Error Actual % Error

c5 0.0009765625 0.0009875311 1.1232% 0.0010488657 7.4038%
d5 0.0009765625 0.0009625418 −1.4357% 0.0010503135 7.5521%
d4 0.0039062500 0.0039076937 0.0370% 0.0041935694 7.3554%
d3 0.0156250000 0.0156290960 0.0262% 0.0162325535 3.8883%
d2 0.0625000000 0.0624991378 −0.0014% 0.0604332700 −3.3068%
d1 0.2500000000 0.2499814210 −0.0074% 0.2600915191 4.0366%

Entire signal 0.3339843750 0.3340371660 0.0158% 0.3430821975 2.7240%

which are both very close to 1. Consequently, both Theorems 3 and 4 provide close estimates even though
the 9-7 system is not orthonormal. In Table 1, we verify this observation empirically. In these results, we
typically see a 3–7% error between the value predicted by Theorem 3 and that actually obtained for the 9-7
filter.

5.3 Alternate Normalizations
Throughout this paper, we have assumed that the h and g filters underlying the RDWT were normalized

such that the corresponding frame was uniform. However, alternate filter normalizations are sometimes
used in practice, in which case the preceding analysis is altered. For example, in some signal-processing
applications, it is desired that the scaling filter not alter the dynamic range of the signal; consequently, one
normalizes h such that ∑

k

h[k] = 1, (105)

rather than using the orthonormal normalization of (22). In this case, the 1
2 scaling factor is removed from

the à trous synthesis procedure of (44). Since the RDWT frame is no longer uniform, Theorem 1 no longer
applies—nor is it needed, because interestingly, under this normalization scheme, the RDWT becomes a
tight frame with bounds A = B = 1, as was shown in [5]. As a consequence, the result of Theorem 4
simplifies to

E
[∣∣x[k]

∣∣2
]

= σ2, (106)

while the result from Theorem 3 becomes

E
[∣∣x[k]

∣∣2
]

=
σ2

2j
, (107)

since it can be shown that the norms of the associated DTWS basis are
∥∥φj
∥∥2

=
∥∥ψj

∥∥2
= 2−j . (108)

Thus, this particular normalization offers a simple conservation-of-energy relationship (
∥∥x
∥∥2

=
∥∥X
∥∥2),

which may be an advantage should total energy be the quantity of interest in an application. More frequently,

14

Technical Report MSSU-COE-ERC-04-04, Mississippi State ERC, Mississippi State University, March 2004



however, applications need noise energy on a subband-by-subband basis, for which we have a result very
similar to that of Theorem 3. Thus, both normalizations schemes offer equivalent performance potential
from this perspective.

6. Conclusions
In this paper, we considered the effect of additive noise in RDWT expansions. We found that, contrary
to expectations, we can very accurately characterize noise distortion in the original signal domain from
distortion in the RDWT domain, despite the fact that the frame bounds of the RDWT widen as the number
of decomposition scales increases. The most important aspect of our analytical results was a relationship for
noise distortion on a subband-by-subband basis; that is, we determined that the noise resulting from a single
RDWT subband depends only on the decomposition scale at which the subband resides and is independent
of that from other subbands.
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Appendices

A Proof of Lemma 2
Consider the sum

∥∥∥cJ
∥∥∥

2
+
∥∥∥dJ

∥∥∥
2
−
∥∥∥cJ−1

∥∥∥
2

=
∥∥∥ĉJ
∥∥∥

2
+
∥∥∥d̂J

∥∥∥
2
−
∥∥∥ĉJ−1

∥∥∥
2
. (109)

From (4), (48), and (49), we have

∥∥∥ĉJ
∥∥∥

2
+
∥∥∥d̂J

∥∥∥
2
−
∥∥∥ĉJ−1

∥∥∥
2

=

1

2π

∫ π

−π

[
J−1∏

λ=0

∣∣∣ĥ0

(
2λω

)∣∣∣
2

+
∣∣ĝ0

(
2J−1ω

)∣∣2
J−2∏

λ=0

∣∣∣ĥ0

(
2λω

)∣∣∣
2
−
J−2∏

λ=0

∣∣∣ĥ0

(
2λω

)∣∣∣
2
]
∣∣x̂(ω)

∣∣2 dω. (110)

Since from (26), ∣∣∣ĝ0

(
2J−1ω

)∣∣∣
2

= 2−
∣∣∣ĥ0

(
2J−1ω

)∣∣∣
2
, (111)

we have

∥∥∥ĉJ
∥∥∥

2
+
∥∥∥d̂J

∥∥∥
2
−
∥∥∥ĉJ−1

∥∥∥
2

=
1

2π

∫ π

−π

[
J−2∏

λ=0

∣∣∣ĥ0

(
2λω

)∣∣∣
2
]
∣∣x̂(ω)

∣∣2 dω (112)

=
1

2π

∫ π

−π

∣∣ĉJ−1(ω)
∣∣2 dω (113)

=
∥∥∥ĉJ−1

∥∥∥
2

(114)

=
∥∥∥cJ−1

∥∥∥
2
, (115)

where we again employ (48). Thus, we have
∥∥cJ
∥∥2

+
∥∥dJ

∥∥2 −
∥∥cJ−1

∥∥2
=
∥∥cJ−1

∥∥2
. (116)

Now, expanding (43) in terms of X (J−1) yields

∥∥∥X(J)
∥∥∥

2
=
∥∥∥cJ
∥∥∥

2
+

J∑

j=1

∥∥∥dj
∥∥∥

2
(117)

=
∥∥∥cJ
∥∥∥

2
+
∥∥∥dJ

∥∥∥
2
−
∥∥∥cJ−1

∥∥∥
2

+
∥∥∥X(J−1)

∥∥∥
2
, (118)

and we arrive at (56) by substituting (116) into the above expression.

B Signals Satisfying RDWT Frame Bounds
We now show that the bounds of A = 2 and B = 2J are the tightest possible frame bounds since we can

find sequences x ∈ `2(Z) that asymptotically meet these bounds. Specifically, consider a constant sequence
x[k] = 1. Technically, this x is not in `2(Z); however, we define xN ∈ `2(Z) as

xN [k] =

{
1√

2N+1
, −N ≤ k ≤ N,

0, else,
(119)
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for N = 1, 2, . . . . We note that ∥∥xN
∥∥2

= 1, (120)

for all N . We have from (22) and (23),

h[−k] ∗ x[k] =
∑

n

h[n] =
√

2, (121)

g[−k] ∗ x[k] =
∑

n

g[n] = 0. (122)

Thus, we have in the limit,

lim
N→∞

√
2N + 1

(
h[−k] ∗ xN [k]

)
= h[−k] ∗

(
lim
N→∞

xN [k]
√

2N + 1
)

(123)

= h[−k] ∗ x[k] (124)

=
∑

n

h[n] =
√

2, (125)

lim
N→∞

√
2N + 1

(
g[−k] ∗ xN [k]

)
= g[−k] ∗

(
lim
N→∞

xN [k]
√

2N + 1
)

(126)

= g[−k] ∗ x[k] (127)

=
∑

n

g[n] = 0, (128)

which, in conjunction with (39) and (40), produce

lim
N→∞

cj [k]
√

2N + 1 = 2j/2, (129)

lim
N→∞

dj [k]
√

2N + 1 = 0, (130)

for j = 1, . . . , J . We see then that

lim
N→∞

cj [k]
√

2N + 1 = 2j/2 lim
N→∞

xN [k]
√

2N + 1, (131)

and so
lim
N→∞

∥∥cj
∥∥2

(2N + 1) = 2j lim
N→∞

∥∥xN
∥∥2

(2N + 1), (132)

or

lim
N→∞

∥∥cj
∥∥2

= 2j lim
N→∞

∥∥xN
∥∥2 (133)

= 2j , (134)

where the last equality derives from (120). Additionally, we have

lim
N→∞

∥∥dj
∥∥2

= 0. (135)

Now, consider the quantity βN ,

βN =

∥∥∥X(J)
N

∥∥∥
2

∥∥xN
∥∥2 , (136)
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where X(J)
N = RDWTJ [xN ]. From (120), (43), (134), and (135), we have

lim
N→∞

βN = lim
N→∞

∥∥∥X(J)
N

∥∥∥
2

∥∥xN
∥∥2 (137)

= lim
N→∞

∥∥∥X(J)
N

∥∥∥
2

(138)

= lim
N→∞

[∥∥∥cJ
∥∥∥

2
+

J∑

j=1

∥∥∥dj
∥∥∥

2
]

(139)

= 2J . (140)

We note from (6), βN ≤ B, ∀N , thus it is true in the limit. Consequently, we have 2J ≤ B and, from (66),
B ≤ 2J . Thus, B = 2J .

Alternatively, consider x[k] = (−1)k. Again, note that x /∈ `2(Z), but that we can define xN ∈ `2(Z) as

xN [k] =

{
(−1)k√
2N+1

, −N ≤ k ≤ N,
0, else,

(141)

for N = 1, 2, . . . . We note that ∥∥xN
∥∥2

= 1, (142)

for all N . Thus, we have in the limit,

lim
N→∞

√
2N + 1

(
h[−k] ∗ xN [k]

)
= h[−k] ∗

(
lim
N→∞

xN [k]
√

2N + 1
)

(143)

= h[−k] ∗ x[k] (144)

=
∑

n

h[−n]x[k − n] (145)

=
∑

n

h[−n](−1)k−n (146)

= (−1)k

(∑

n

h[2n]−
∑

n

h[2n+ 1]

)
(147)

= 0, (148)

where the second-to-last equality comes from splitting the sum into even and odd indices, and the last
equality comes from (24). From (25) and (22),

lim
N→∞

√
2N + 1

(
g[−k] ∗ xN [k]

)
= g[−k] ∗

(
lim
N→∞

xN [k]
√

2N + 1
)

(149)

= g[−k] ∗ x[k] (150)

=
∑

n

g[−n]x[k − n] (151)

= ±
∑

n

(−1)−nh[K + n](−1)k−n (152)

= ±(−1)k
∑

n

h[n] (153)

= ±(−1)k
√

2. (154)
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Thus, from (39) and (40),

lim
N→∞

cj [k]
√

2N + 1 = 0, j = 1, . . . , J, (155)

lim
N→∞

dj [k]
√

2N + 1 =

{
±(−1)k

√
2, j = 1,

0, j = 2, . . . , J.
(156)

We see that then
lim
N→∞

∥∥cj
∥∥2

= 0, (157)

and
lim
N→∞

∥∥d1

∥∥2
(2N + 1) = 2 lim

N→∞

∥∥xN
∥∥2

(2N + 1), (158)

or

lim
N→∞

∥∥d1

∥∥2
= 2 lim

N→∞

∥∥xN
∥∥2 (159)

= 2, (160)

where the last equality derives from (142). Define αN as

αN =

∥∥∥X(J)
N

∥∥∥
2

∥∥xN
∥∥2 . (161)

We note that from (6), αN ≥ A, ∀N . From (142), (43), (157), and (160), we have

lim
N→∞

αN = lim
N→∞

∥∥∥X(J)
N

∥∥∥
2

∥∥xN
∥∥2 (162)

= lim
N→∞

∥∥∥X(J)
N

∥∥∥
2

(163)

= lim
N→∞

[∥∥∥cJ
∥∥∥

2
+

J∑

j=1

∥∥∥dj
∥∥∥

2
]

(164)

= 2. (165)

Consequently, from (61) and the derivation above, we have 2 ≤ A ≤ 2, so A = 2.
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[25] Z. Cvetković and M. Vetterli, “Oversampled filter banks,” IEEE Transactions on Signal Processing,
vol. 46, no. 5, pp. 1245–1255, May 1998.

[26] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of compactly supported wavelets,”
Communications on Pure and Applied Mathematics, vol. 45, no. 5, pp. 485–560, May 1992.

[27] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,”
IEEE Transactions on Image Processing, vol. 1, no. 2, pp. 205–220, April 1992.

[28] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Communications on Pure and
Applied Mathematics, vol. 41, pp. 909–996, November 1988.

21

Technical Report MSSU-COE-ERC-04-04, Mississippi State ERC, Mississippi State University, March 2004


