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Embedded Wavelet-Based Image
Compression: State of the Art

Eingebettete Wavelet-basierte Bildkompression: Stand der Technik

James E. Fowler, Mississippi State University, U.S.A.

Summary The architecture of modern image-compression
algorithms built upon the embedded coding of wavelet co-
efficients is reviewed. The production of coefficients from
wavelet filter banks is described along with the subsequent
partitioning into significant and insigificant coefficient sets via
bitplane coding. An overview of the zerotree and context-
conditioning mechanisms for coding binary maps of significant
coefficients is presented, and other less prominent approaches
to significance-map coding are surveyed. Additionally, common
approaches to refinement- and sign-bit coding are considered.
Finally, the rate-distortion performance is empirically evaluated
for several coders representative of each class, including the

prominent Set Partitioning in Hierarchical Trees (SPIHT) algo-
rithm and the recent JPEG-2000 standard. ��� Zusam-
menfassung Der vorliegende Beitrag geht auf eingebettete
Wavelet-basierte Bildkompressionsverfahren ein, wie sie zum
Beispiel im neuen JPEG-2000 Standard zum Einsatz kom-
men. Diskrete Wavelet Transformationen im Zusammenspiel mit
der Aufteilung der Koeffizienten in signifikante und nichtsig-
nifikante Koeffizienten, die während der Kodierung eine heraus-
ragende Rolle spielt, werden beschrieben. Der Beitrag schließt
mit einer empirischen Auswertung verschiedener Kodierer ein-
schließlich des bekannten Set Partitioning in Hierarchical Trees
(SPIHT) Algorithmus.

KEYWORDS I.4.2 [Image Processing] Compression

1 Introduction
In many applications involving
communication of images, pro-
gressive transmission is desired in
that successive reconstructions of
the image are possible. In such
a scenario, the receiver can pro-
duce a low-quality, or “thumbnail”
representation of the image after
having received only a small por-
tion of the transmitted bitstream,
and this “preview” of the image can
be successively refined in quality or
resolution (size) as more and more
of the bitstream is received. Modern
image-compression techniques sup-
port such progressive transmission
through the use of embedded cod-
ing.

An embedded coding of an
image is any coding such that 1) any

prefix of length N bits of an M-
bit coding is also a valid coding of
the entire image, 0 < N ≤ M; and 2)
if N ′ > N, then the distortion upon
reconstructing from the length-N ′
prefix is less than or equal to that
associated with the length-N pre-
fix. Figures 1 and 2 illustrate the
difference between transmission of
typical nonembedded and embed-
ded codings.

The general philosophy behind
embedded coding lies in the recog-
nition that each successive bit of the
bitstream that is received reduces
the distortion of the reconstructed
image by a certain amount. Con-
sequently, in order to achieve an
embedded coding, we must orga-
nize information in the bitstream
in decreasing order of importance,

Figure 1 Transmission of a nonembedded cod-
ing.

Figure 2 Transmission of an embedded cod-
ing.
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where the most important informa-
tion is defined to be that which
produces the greatest reduction in
distortion upon reconstruction. Al-
though it is usually not possible
to exactly achieve this ordering in
practice, modern embedded image-
compression algorithms do come
close to approximating this optimal
embedded ordering.

Modern embedded image coders
are essentially built upon three
major components: a wavelet trans-
form, successive-approximation
quantization, and significance-map
encoding. Below, we overview these
components and describe how each
are implemented within several
prominent algorithms, including
the recent JPEG-2000 standard
[1; 2].

2 The Discrete Wavelet
Transform

Transforms aid the establishment
of an embedded coding in that,
for naturally occurring images, low-
frequency components contain the
majority of signal energy and are
thus more important than high-
frequency components to the image
reconstruction. Wavelet transforms
are currently the transform of
choice for modern image coders
since they not only provide this par-
titioning of information in terms of
frequency but also retain much of
the spatial structure of the original
image. We will see below that many
coders exploit this spatial structure
in order to obtain substantial coding
efficiency.

Figure 3 One
stage of DWT
decomposition
composed of low-
pass (LPF) and
highpass (HPF) fil-
ters applied to the
columns and rows
independently.

Figure 4 A
3-scale DWT.
(a) Pyramid
arrangement
of subbands,
(b) DWT co-
efficients of
an image.

A discrete wavelet transform
(DWT) can be implemented as
a filter bank as illustrated in Fig-
ure 3. This filter bank decomposes
the original image into horizontal
(H), vertical (V), diagonal (D),
and baseband (B) subbands, each
being one-fourth the size of the
original image. Wavelet theory pro-
vides filter-design methods such
that the filter bank is perfectly
reconstructing (i. e., there exists
a reconstruction filter bank that will
generate exactly the original image
from the decomposed subbands H,
V , D, and B), and such that the
lowpass and highpass filters have fi-
nite impulse responses (which aids
practical implementation). Multi-
ple stages of decomposition can
be cascaded together by recur-
sively decomposing the baseband;
the subbands in this case are usually
arranged in a pyramidal form as il-
lustrated in Figure 4, where subband
Sj is subband S at decomposition
stage j, S ∈ {H, V , D}.

Regarding Figure 4, we observe
the following facts about the DWT
of an image:

(1) since most images are lowpass
in nature, most signal energy
is compacted into the lower-
frequency subbands (i.e., the
baseband and the Sj subbands
where j is large);

(2) most coefficients in Sj are zero
for small j;

(3) small- or zero-valued coeffi-
cients tend to be clustered to-
gether within subband Sj; and

(4) clusters of small- or zero-valued
coefficients in subband Sj tend
to be located in the same relative
spatial position as similar clus-
ters in subband Sj+1.

3 Bitplane Coding
The partitioning of information
into DWT subbands somewhat in-
herently supports embedded coding
in that transmitting coefficients by
ordering the subbands as BJ , HJ , VJ ,
DJ , HJ–1, VJ–1, DJ–1, ..., implements
a decreasing order of importance.
However, more is needed to produce
a truly embedded bitstream—even
if coefficient ci ∈ Sj is more import-
ant than coefficient ck ∈ Sj, not every
bit of ci is necessarily more import-
ant than every bit of ck. That is,
not only should the coefficients be
transmitted in decreasing order of
importance, but also the individual
bits that constitute the coefficients
should be ordered as well.

Specifically, to effectuate an em-
bedded coding of a set of coeffi-
cients, we represent the coefficients
in sign-magnitude form as illus-
trated in Figure 5 and code the
sign and magnitude of the coef-
ficients separately. For coefficient-
magnitude coding, we transmit the
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Figure 5 Bitplanes of the sign-magnitude rep-
resentation of coefficients for bitplane coding.

most significant bit (MSB) of all
coefficient magnitudes, then the
next-most significant bit of all co-
efficient magnitudes, etc., such that
each coefficient is successively ap-
proximated. This “bitplane-coding”
scheme is contrary to the usual
binary representation which would
output all bits of |c0|, then all bits
of |c1|, etc. The net effect of the bit-
plane coding is that each coefficient
magnitude is successively quantized
by dividing the interval in which
it is known to reside in half and
outputting a bit to designate the ap-
propriate subinterval, as illustrated
in Figure 6.

In practice, bitplane coding is
usually implemented by perform-
ing two passes through the set of
coefficients for each bitplane—the
significance pass and the refinement
pass. We define the significance state
xi with respect to threshold t of coef-
ficient ci as xi = 1 if |ci| ≥ t (i. e., ci is
a significant coefficient), and xi = 0
otherwise (i. e., ci is insignificant).
The significance pass describes xi for
all the coefficients in the DWT that
are currently known to be insignif-
icant but may become significant

Figure 6 Successive-ap-
proximation quantization of
a coefficient magnitude |c|
in interval [0, T] where T is
an integer power of 2.

for the current threshold. On the
other hand, the refinement pass pro-
duces a successive approximation to
those coefficients that are already
known to be significant by coding
the current coefficient-magnitude
bitplane for those significant coef-
ficients. After each iteration of the
significance and refinement passes,
the significance threshold is divided
in half, and the process is repeated
for the next bitplane.

4 Significance-Map Coding
The collection of xi values for all the
coefficients in the DWT of an image
is called the significance map for
a particular threshold value. Given
our observations of the nature of
DWT coefficients in Section 2, we
see that for most of the bitplanes
(particularly for large t), the signifi-
cance map will be only sparsely pop-
ulated with nonzero values. Conse-
quently, the task of the significance
pass is to create an efficient cod-
ing of this sparse significance map at
each bitplane; the efficiency of this
coding will be crucial to the overall
compression efficiency of the image
coder. Below, we review several ap-
proaches that prominent algorithms
have taken for the efficient coding of
significance-map information.

4.1 Zerotrees
As illustrated in Figure 7, except
in subbands S1 and in the base-
band, every “parent” coefficient in
subband Sj can be related to four
“children” coefficients in the same
relative spatial location in subband

Figure 7 Parent-child relationships between
subbands of a DWT.

Sj–1. In the baseband BJ , each par-
ent has three children, one in each
of HJ , VJ , and DJ . A zerotree is
formed when a coefficient and all
of its descendants are insignificant
with respect to the current thresh-
old, while a zerotree root is defined
to be a coefficient that is part of a ze-
rotree yet is not the descendant of
another zerotree root.

The Embedded Zerotree Wavelet
(EZW) algorithm [3] was the first
image coder to make use of zerotrees
for the coding of significance-map
information. This coder is based on
the observation that if a coefficient
is found to be insignificant, it is
likely that its descendants are also
insignificant. Consequently, the oc-
currence of a zerotree root in the
baseband or in the lower-frequency
subbands can lead to substantial
coding efficiency since we can de-
note the zerotree root as a special
“Z” symbol in the significance map,
and not code all of the descendants
which are known then to be in-
significant by definition. The EZW
algorithm then proceeds to code
the significance map in a raster scan
within each subband, starting with
BJ and progressing to the high-
frequency subbands. In this raster
scan a significant coefficient is de-
noted by either a “+” or “–” symbol
depending on whether the coeffi-
cient value is positive or negative,
while zerotree roots are denoted
by the “Z” symbol and isolated
insignificant coefficients (i. e., in-
significant coefficients not forming

258



Embedded Wavelet-Based Image Compression ���

Figure 8 Processing of sorted lists in SPIHT.

a zerotree root) are denoted by the
“I” symbol. A lossless entropy cod-
ing of this symbol stream then
produces a compact representation
of the significance map. The sig-
nificance threshold is halved, and
the zerotree coding process is re-
peated for each successive bitplane.
Note that, once a coefficient be-
comes significant and is coded with
a “+” or “–,” no further information
concerning that coefficient need be
coded in the significance pass for
subsequent bitplanes.

The Set Partitioning in Hier-
archical Trees (SPIHT) algorithm
[4] improves upon the zerotree con-
cept by replacing the raster scan
with a number of sorted lists that
contain sets of coefficients (i.e., ze-
rotrees) and individual coefficients.
These lists are illustrated in Fig-
ure 8. In the significance pass of
the SPIHT algorithm, the list of in-
significant sets (LIS) is examined in
regard to the current threshold; any
set in the list that is no longer a ze-
rotree with respect to the current
threshold is then partitioned into
one or more smaller zerotree sets,
isolated insignificant coefficients, or
significant coefficients. Isolated in-
significant coefficients are appended
to the list of insignificant pixels
(LIP), while significant coefficients
are appended to the list of sig-
nificant pixels (LSP). The LIP is
also examined, and, as coefficients
become significant with respect to
the current threshold, they are ap-
pended to the LSP. Binary symbols
are encoded to describe motion of
sets and coefficients between the
three lists. Since the lists remain
implicitly sorted in an importance

ordering, SPIHT achieves a high de-
gree of embedding and compression
efficiency.

4.2 Conditional Coding
Recent work [5] has indicated that
typically the ability to predict the in-
significance of a coefficient through
parent-child relationships such as
those employed by zerotree algo-
rithms is somewhat limited com-
pared to the predictive ability of
neighboring coefficients within the
same subband. Consequently, re-
cent algorithms have focused on
coding significance-map informa-
tion using only within-subband in-
formation. The typical approach is
to employ multiple-context adaptive
arithmetic coding.

Adaptive arithmetic coding
(AAC) [6] is a lossless coding tech-
nique that codes a stream of sym-
bols into a bitstream with length
very close to its theoretical min-
imum limit. Suppose source X
produces symbol i with probability
pi. The entropy of source X is de-
fined to be

H(X)= –
∑

i

pi log2 pi , (1)

where H(X) has units of bits per
symbol (bps). One of the funda-
mental tenets of information theory
is that the average bit rate in bps
of the most efficient lossless (i. e.,
invertible) compression of source
X cannot be less than H(X). In
practice, AAC often produces com-
pression quite close to H(X) by
estimating the probabilities of the
source symbols with frequencies of
occurrence as it codes the symbol
stream. Essentially, the better able
AAC can estimate pi, the closer it
will come to the H(X) lower bound
on compression efficiency. Often-
times, the efficiency of AAC can be
improved by conditioning the coder
with known context information
and maintaining separate symbol-
probability estimates for each con-
text. That is, limiting attention of
AAC to a specific context usually re-
duces the variety of symbols, thus
permitting better estimation of the

probabilities within that context and
producing greater compression effi-
ciency. From a mathematical stand-
point, the conditional entropy of
source X with known information
Y is H(X|Y). Since it is well known
from information theory that

H(X|Y) ≤ H(X) , (2)

conditioning AAC with Y as the
context will (usually) produce a bit-
stream with a smaller bit rate.

The usual approach to employ-
ing AAC with context conditioning
for the significance-map coding of
an image is to use the known signif-
icance states of neighboring coeffi-
cients to provide the context for the
coding of the significance state of
the current coefficient. Specifically,
the eight neighboring significance
states to xi are shown in Figure 9.
Given that each neighbor takes on
a binary value, there are 28 = 256
possible contexts.

JPEG-2000 [1], the most promi-
nent conditional-coding technique,
uses contexts derived from the
neighbors depicted in Figure 9, but
reduces the number of distinct con-
texts to nine, since not all possible
contexts were found to be useful. To
further improve the context condi-
tioning, as well as to increase the
degree of embedding, JPEG-2000
splits the coding of the significance
map into two separate passes rather
than employ one significance pass as
do most other algorithms. Specific-
ally, JPEG-2000 uses a significance-
propagation pass that codes those
coefficients that are currently in-
significant but have at least one
neighbor that is already significant.
This pass accounts for all coeffi-
cients that are likely to become
significant in the current bitplane.
The remaining insignificant coef-
ficients are coded in the cleanup
pass; these coefficients, which are
surrounded by insignificant coeffi-

Figure 9
Significance-state
neighbors to xi.
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cients, are likely to remain insignifi-
cant. Both passes use the same nine
contexts. In addition, the cleanup
pass includes one additional context
used to encode four successive in-
significant coefficients together with
a single “insignificant run” symbol.

4.3 Other Significance-Map
Techniques

A number of alternatives to ze-
rotrees and conditional coding have
been proposed for significance-map
coding. Since, for a given signif-
icance threshold, the significance
map is essentially a binary image,
techniques that have long been em-
ployed for the coding of bilevel
images are applicable. Specifically,
runlength coding is the fundamental
compression algorithm behind the
Group 3 fax standard; the Wavelet
Difference Reduction (WDR) [7]
combines runlength coding of the
significance map with an efficient
lossless representation of the run-
length symbols to produce an em-
bedded image coder. Another ap-
proach to binary-image coding is
to use quadtrees; the Set Par-
titioned Embedded Block Coder
(SPECK) [8; 9] employs quadtrees
for significance-map coding. Finally,
an all-together different approach
to significance-map coding was pro-
posed recently—the tarp coder of
[10] uses a nonadaptive arithmetic
coder coupled with an explicit prob-
ability estimate of the significance
map generated by Parzen windows,
a well known method of nonpara-
metric probability-density estima-
tion. In [10], this probability es-
timate is efficiently computed by
a novel series of 1D filtering opera-
tions.

5 The Refinement Pass and
Sign Coding

In most embedded image coders,
after the significance map is coded
for a particular bitplane, a refine-
ment pass proceeds through the
coefficients, coding the current bit-
plane value of each coefficient that
is already known to be significant
but did not become significant in

the immediately preceding signifi-
cance pass. These “refinement bits”
permit the reconstruction of the
significant coefficients with progres-
sively greater accuracy. It is usually
assumed that the occurrence of a 0
or 1 is equally likely in bitplanes
other than the MSB for a particu-
lar coefficient; consequently, most
algorithms take little effort to code
the refinement bits and may sim-
ply output them unencoded into
the bitstream. Recently, it has been
recognized that the refinement bits
possess some correlation to their
neighboring coefficients [11], par-
ticularly for the more significant
bitplanes; consequently, the JPEG-
2000 standard calls for the con-
ditional coding of refinement bits
with three contexts. JPEG-2000 also
departs somewhat from the typ-
ical significance-pass/refinement-
pass processing order since the
significance pass is split in two
separate passes—in JPEG-2000, the
refinement pass occurs between the
significance-propagation pass and
the cleanup pass.

The significance and refinement
passes encode the coefficient magni-
tudes; to reconstruct the wavelet co-
efficients, the coefficient signs must
also be encoded. As with the refine-
ment bits, most algorithms assume
that any given coefficient is equally
likely to be positive or negative;
however, recent work [11–13] has
shown that there is some structure

Figure 10 Rate-
distortion performance
for a variety of
image coders for the
“barbara” image.

to the sign information that can
be exploited to improve coding ef-
ficiency. Consequently, JPEG-2000
classifies the signs of neighboring
coefficients into one of five contexts
for coding of the sign of the current
coefficient. As in other embedded
algorithms, in JPEG-2000, the sign
of a coefficient is encoded into the
bitstream immediately following the
encoding of the significance-map
information that indicates that a co-
efficient is transitioning from in-
significant to significant.

6 Performance Comparison
Two quantities must be considered
when comparing the performance
of image-compression algorithms—
the distortion introduced by the
compression measured as the differ-
ence between the original image and
its reconstruction, and the number
of bits in the compressed bitstream,
usually measured as a bit rate in
number of bits per pixel (bpp).
Most often, distortion is meas-
ured as a peak signal-to-noise ratio
(PSNR), which is defined for an 8-
bit grayscale image as

PSNR = 10 log10
2552

D
, (3)

where D is the mean square error
(MSE) between the original image
and the reconstructed image. The
PSNR has units of decibels (dB).

Figure 10 plots the rate-distor-
tion performance for a variety of
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Table 1 PSNR performance at 0.5 bpp.

PSNR (dB)
Algorithm lenna barbara goldhill

JPEG-2000 37.3 32.2 33.2
SPECK 37.1 31.5 33.0
SPIHT 37.1 31.3 33.0
tarp 36.7 31.1 33.0
WDR 36.5 30.7 32.8
JPEG 34.6 27.8 31.4

the algorithms we have consid-
ered in this paper, including both
a zerotree-based technique (SPIHT
[4]) and a conditional-coding tech-
nique (JPEG-2000 [1]), as well
as three other techniques based
on other forms of significance-
map coding (WDR [7], SPECK
[8; 9], and tarp [10]). All coders
use a 5-stage wavelet decomposition
with the popular 9-7 wavelet fil-
ters from [14]. Also shown is the
performance for the original JPEG
standard [15; 16] which is a nonem-
bedded coder that represented the
state of the art in image coder
before the rise of embedded wavelet-
based coding. The QccPack [17]
(http://qccpack.sourceforge.net) im-
plementations for SPIHT, WDR,
SPECK, and tarp are used, while
JPEG-2000 is Kakadu Ver. 3.4
(http://www.kakadusoftware.com)
and JPEG is the Independent JPEG
Group implementation (http://www.
ijg.org). Table 1 shows the PSNR for
several images when all coders pro-
duce bitstreams at a rate of 0.5 bpp.

7 Conclusions
In the experimental comparisons
of the previous section, we ob-
serve that the embedded wavelet-
based coders examined perform
fairly close to one another, with
JPEG-2000 exhibiting a slight ad-
vantage in rate-distortion perform-
ance. However, it should be noted
that JPEG-2000 offers a variety of
features (e. g., lossless compression,
random bitstream access, large-
image coding) not available in the
other implementations we have em-
ployed. Nonetheless, we see that
the modern paradigm of embed-
ded wavelet-based image compres-

sion substantially outperforms the
prior state of the art as represented
by the original JPEG standard. Ad-
ditionally, this increased compres-
sion efficiency is achieved alongside
an inherent capacity for progres-
sive transmission, a characteristic in
high demand in modern applica-
tions yet absent from prior nonem-
bedded techniques.
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NW (Habilitation oder habilitationsadäquate Leistungen)

und Ziff. 2 HG NW (pädagogische Eignung).

Die Universität Paderborn strebt eine Erhöhung des Anteils

an Frauen in Hochschullehrerfunktion an und fordert daher

Frauen nachdrücklich auf, sich zu bewerben. 

Frauen werden nach § 7 LGG bei gleicher Eignung, Befä-

higung und fachlicher Leistung bevorzugt berücksichtigt.

Ebenso ist die Bewerbung geeigneter Schwerbehinderter

und Gleichgestellter im Sinne des Sozialgesetzbuches 

Neuntes Buch (SGB IX) erwünscht. 

Bewerbungen mit den üblichen Unterlagen werden inner-

halb von 4 Wochen nach Veröffentlichung unter Angabe der 

jeweiligen Kennziffer erbeten an den Dekan der Fakultät für

Elektrotechnik, Informatik und Mathematik der Universität

Paderborn, Warburger Str. 100, 33098 Paderborn.
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