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ABSTRACT

Vector quantization (VQ) has long been a popular technique for data compression
due in part to results from rate-distortion theory that show that V(Q is asymptoti-
cally optimal for the coding of a stationary source. The fact most sources of practical
interest are, in reality, nonstationary has prompted a search for more general VQ
algorithms that are capable of adapting to changing source statistics as the cod-
ing progresses. Such algorithms, collectively known as adaptive vector quantization
(AVQ), apply often heuristically motivated modifications to VQ to achieve coding
schemes that adapt to the changing statistics of nonstationary sources.

The work presented here describes a mathematical model of communication sys-
tems using AVQ which we believe to be the first of its kind to appear. This model
accurately describes the operation of each of the components of an AVQ communi-
cation system, is sufficiently general to apply to all reported AVQ algorithms, and
allows the classification of these prior algorithms in a taxonomy, which is also pre-
sented. An additional contribution of our work is the development of a new AVQ
algorithm, called generalized threshold replenishment (GTR), which is based on the
explicit consideration of both rate and distortion measures concurrently with the cod-

ing of the source. We show in a series of experimental results obtained for both an
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artificial nonstationary source as well as for real image-sequence data that the GTR
algorithm achieves rate-distortion performance superior to that of other reported AVQ

algorithms, particularly for low-rate coding.
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CHAPTER 1

INTRODUCTION

Digital systems for signal-processing and communications applications have en-
joyed widespread use in recent decades due to their low cost of implementation,
ease of programming, and fault tolerance [1]. The fact that most real-world signals
are continuous-time, continuous-amplitude waveforms necessitates the conversion to
discrete-time, discrete-amplitude representations suitable for digital processing. Al-
though Nyquist sampling theorems argue that converting from continuous time to
discrete time can be accomplished without distorting low-pass signals common in
real applications, the quantization of continuous amplitudes to discrete values neces-
sarily introduces distortion [1]. Thus the issue of lossy quantization, or more generally
that of source coding, arises in nearly every application using digital systems.

Over the last 20 years, vector quantization (VQ) has received significant attention
as a powerful technique for source coding. As we will see later, VQ is theoretically
attractive due to results from rate-distortion theory that show that VQ is asymptot-
ically optimal for the coding of a data source whose statistics are stationary in time.
Although V(Q has been successfully applied to the coding of speech, audio, image, and
video data [2], these sources can rarely be assumed to be stationary in practice, lead-
ing to a gap between the performance predicted by theory and that actually obtained
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in real implementations. Indeed, the nonstationary nature of the sources used by
many practical applications has prompted a search for more general VQ algorithms
that are capable of adapting to changing source statistics as the coding progresses.
Such algorithms use what we call adaptive vector quantization (AVQ).

There have been a number of AVQ algorithms proposed in engineering literature
since 1982. Because of the scarcity of rate-distortion results for nonstationary sources,
most of these algorithms have been heuristically, rather than analytically, motivated.
As a result, the theoretical performance potential of AVQ has been little understood
to date. Additionally, there has been little attempt to develop a model of AVQ
sufficiently general to encompass the operation of all existing AVQ algorithms or
to compare the performances associated with them. The research described in this
dissertation is intended to address these shortcomings.

One of the key contributions of the work presented here is the development of a
mathematical model for communication systems using AVQ. This model accurately
describes the operation of each of the components of an AVQ communication system
while being sufficiently general to apply to all reported AVQ algorithms. We discuss
the general operation of the components included in the model as well as describe
the simplifying assumptions typically used in the practical implementation of those
components. The unifying framework resulting from our AVQ model leads naturally
to a taxonomy of existing AV(Q algorithms. To our knowledge, the mathematical
model of AVQ presented here, as well as the taxonomy of existing AV(Q algorithms, is
the first such discussion to appear, and, as such, represents original work in the field

of AVQ.



Another important contribution included here is the development of a new AVQ
algorithm called generalized threshold replenishment (GTR). Inspired by the analysis
leading to the AVQ taxonomy, the GTR algorithm is one of two AVQ algorithms to
feature an explicit consideration of both rate and distortion, the two quantities that
measure the performance of a coding algorithm. We show in a series of experimental
results that the GTR algorithm achieves rate-distortion performance superior to that
of other reported AV(Q algorithms, particularly for low-rate coding.

This body of experimental results is the final contribution of the work presented
here. In these results, we evaluate the performances of AVQ algorithms against each
other as well as make comparisons with nonadaptive VQ. We consider not only an
artificially generated nonstationary source, but also real data in the form of an image
sequence. We believe that the comparisons presented here between the previously
reported AVQ algorithms are unique to this dissertation, as we know of no similar
performance evaluation appearing in prior literature. These results show that the
GTR algorithm consistently achieves low-rate-coding performance superior to that of
other AVQ algorithms. Since a severe rate constraint is implicit in many applications
of current interest, such as network and wireless communications, low-rate coding
techniques will play an important role in the future of communications. We conclude
that algorithms like GTR will be instrumental to the incorporation of AVQ techniques
into practical low-rate coding implementations.

The organization of the remainder of this dissertation is as follows. In general,
we discuss relevant background material in Chapters 2 through 5, while Chapters 6
through 9 focus on the original contributions of our work. Specifically, in Chap-

ter 2, we review relevant mathematics from probability theory. We then continue the



background review in Chapter 3 by giving an overview of information theory, the foun-
dation of the modern mathematical theory of communication. This discussion leads
naturally into Chapter 4 which surveys rate-distortion theory, the extension of infor-
mation theory to the case of lossy communication. The final chapter of background
material, Chapter 5, provides an extensive review of nonadaptive VQ. Included in
this chapter is the application of source-coding theorems described in Chapter 4 to
establish the optimal source-coding capability of V(@ for stationary sources.

The presentation of the original contributions of our work begins in Chapter 6.
In that chapter, we develop a mathematical theory of AVQ that parallels that of
nonadaptive VQ given in Chapter 5. This mathematical theory enables the develop-
ment of a model of AVQ communication systems, included at the end of Chapter 6.
Then, in Chapter 7, the AVQ algorithms that have appeared in prior literature are
described in light of our AVQ communication-system model. The source-coding theo-
rems of Chapter 4 coupled with the communication-system model of Chapter 6 inspire
a categorization of these prior AVQ algorithms; the presentation of the resulting tax-
onomy concludes Chapter 7. We detail our proposed GTR algorithm in Chapter 8
and then present extensive experimental results in Chapter 9. Finally, we make some

concluding remarks in Chapter 10.



CHAPTER 2

PROBABILITY THEORY AND COMMUNICATION
SYSTEMS

In this chapter, we lay some of the groundwork for the discussions to come later.
In Sections 2.1 and 2.2, we briefly describe some of the concepts from probability
theory that form the mathematical foundation necessary to these later discussions.
We conclude this chapter with Section 2.3 in which probability theory is used to

construct a mathematical representation of real communication systems.

2.1 Random Variables and Random Vectors

In this and the next section, basic concepts from probability theory are presented.
Because the motivation of these two sections is solely to introduce notation and ter-
minology, a basic understanding of probability theory is assumed. Unless otherwise
noted, the definitions in these two sections come from Gray [3]; for a more detailed
investigation, consult Papoulis [4]. Additionally, a mathematically rigorous devel-
opment of probability theory in terms of measure theory can be found in Halmos
[5].

A random variable is a number, X assigned to every outcome of an experiment [4].

Random variables can be either continuous or discrete. Continuous random variables



have a probability density function (pdf), fx(x), over all x € R, where R is the set
of real numbers. We assume that the pdf of a continuous random variable exists, is

finite, and is continuous over all R, and

/ fx(z)dz = 1. (2.1)
R

A discrete random variable has a probability mass function (pmf), px(z), defined on

finite alphabet X C R such that

> px(r)=1. (2.2)

A random vector, X, is a finite collection of random variables [3]. If all the vector
components of a random vector are continuous random variables, the random vector
is continuous. Such a random vector has a pdf, fx(x), defined for each vector x in the
N-dimensional Euclidean space 8", where N is the dimension of the random vector.

The pdf must satisfy
fx(x)dx =1 (2.3)
§RN

The pdf of a continuous random vector is the joint probability density of all of the
continuous random variables from which the random vector is composed. Similarly,
if all the vector components of a random vector are discrete, the random vector is
discrete. Such a random vector has a pmf, px(x), defined for each N-dimensional

vector x in a finite alphabet of vectors, X', so that

pr(x) =L (2.4)

The pmf of a discrete random vector is the joint pmf of all of its constituent discrete

random variables.



The next section continues with more definitions from probability theory by con-
sidering sequences of random variables and vectors. Such sequences are called random

processes.

2.2 Random Processes and Random-Vector Processes

A random process is a possibly infinite, indexed collection of random variables [3].
We denote a random process as X,,, where n is the index of the process. Index n is
usually considered to be a value of “time.” We will consider only the case in which
n is discrete; i.e., X,, is a discrete-time random process. Occasionally the notation
X,, will refer to the entire random process; at other times, it will refer to the value of
the process at a specific time n (in which case X,, denotes a single random variable).
We will endeavor to carefully distinguish between these two cases in the remainder of
this document. A random process can be either continuously distributed or discretely
distributed, depending on whether its constituent random variables are continuous or
discrete, respectively. Since we are considering only discrete-time random processes,
we will generally refer to a continuously distributed, discrete-time random process
as a continuous random process and a discretely distributed, discrete-time random
process as a discrete random process.

The statistics of random processes are described by joint pdf’s or pmf’s. The
ri-order pdf of a continuous random process X,, is the joint pdf, fx, (21,22, -.,7,),
of the continuous random variables X;, X5, ..., X, of the process. Similarly, the
r*i_order pmf of a discrete random process is the joint pmf, px, (%1, s, ..., 2,), of the

discrete random variables X;, X,, ..., X, of the process. We will usually assume



that a random process exists over all time n > 1. Thus, the complete statistics of a
random process are specified by the infinite-order pdf or pmf which is the joint pdf
or pmf of the random variables over all time indices n > 1.

A random process is stationary if the pdf or pmf is invariant to time shifts [4].

That is, for all shifts ¢ > 0 and for all orders r,
fxo (@1, 20, .. 20) = fx, (Teg1, Tega, - - -y Tisr), (2.5)

for stationary, continuous random processes, or

bx, (3)1, T, ... ,xr) = Px, ($t+1’ Tt42, .- "rt-H”)’ (26)

for stationary, discrete random processes. Random process that are not stationary are
called nonstationary. One simple, yet important, class of stationary random processes
are the independent and identically distributed (iid) processes. A continuous iid

process has r*-order pdf

r
fxa(@r, @, xe) = [ ] fxa (@a); (2.7)
i=1
that is, each random variable X; of the process has the same pdf and is independent
from all other random variables of the process. Discretely distributed iid processes
are defined similarly.

A random-vector process, X,, is an indexed collection of random vectors. Again, a
random-vector process can be either continuously distributed or discretely distributed,
depending on whether its constituent random vectors are continuously or discretely
distributed, respectively. In the remainder of this document, we will consider only
discrete-time random-vector processes. We will generally refer to a continuously dis-
tributed, discrete-time random-vector process as a continuous random-vector pro-
cess and a discretely distributed, discrete-time random-vector process as a discrete

8



random-vector process. The r'"-order probability density or mass function of a
random-vector process is the joint density or mass function of the r random vec-
tors X, X, ..., X, of the process. Stationarity for random vector processes is
defined similarly to Equations 2.5 and 2.6.

In the next section, we will illustrate how the definitions given up to this point
are used to model communication systems. Later, this model will allow us to employ
certain mathematical results to determine the theoretical performance limits of real

communication systems.

2.3 A Model of Communication Systems

Random variables and random processes are the basic building blocks of math-
ematical models of communication systems. Figure 2.1 depicts the communication-
system model used by Berger in his development [6] of rate-distortion theory. Al-
though not a perfect representation of real communication systems, this model cap-
tures many of the attributes of physical systems that are of interest to communication-
systems designers while providing a convenient basis for the derivation of theoretical
performance results.

The source shown in Figure 2.1 is the origin of information to be communicated
through the system. In the real world, there are many different types of information
sources; however, we represent each as follows. At any given time, the source outputs
a symbol X. The set of all possible output symbols is the source alphabet, X. We
assume that we do not know in advance what symbol the source will output at a given
time; however, we may have some knowledge of the likelihood of the occurrence of

the symbols. The natural model of the source in this case is either a random variable



Channel
Coder

Source
Coder

Source

Encoder

Channel

Channel
Decoder

Source

Receiver
Decoder

Decoder

Figure 2.1: A model of a communication system (redrawn and revised from [6])

(if we are interested in the operation of the system at only one time) or a random
process (to describe the system’s operation over a length of time). The probability
density or mass function of the random variable or process describes the imperfect
knowledge of the output of the source.

The receiver is the destination of the information communicated through the
system. In real systems, the receiver is usually a person or a machine. In either
case, the performance of the communication system is measured by how the receiver
interprets the output of the system, symbol Y, when the source is communicating X.

The performance of a communication system will depend on the operation of each
of its components in conjunction with the behavior of the medium through which they

communicate. As shown in Figure 2.1, the communication system is divided into two
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major components, an encoder and a decoder, which communicate through a channel.
The encoder translates a source symbol X to a channel symbol C which is transmitted
through the channel. The decoder perceives a channel symbol C (possibly different
from C') which it converts to an estimate Y of the original source symbol X.

The channel is a mathematical model of the medium over which communication
occurs. As the channel usually describes a physical medium which is fixed in advance
of the design of the communication system, the designer of the system usually has
little or no control over the behavior of the channel model. The problem faced by the
designer is to develop a system which delivers good performance for the prespecified
channel. In order to facilitate this design task, it is common to further partition the
encoder and decoder as is shown in Figure 2.1 [6]. The encoder can be considered to
be composed of a source coder, which manipulates symbols from the source, and a
channel coder, which prepares symbols for communication over the channel. Typically,
the source-coder operation is some form of data compression, which results in a more
efficient expression of the information from the source. The channel coder usually
introduces some form of error-protection coding that attempts to ameliorate the effects
of the channel on the transmitted symbol. Likewise, the decoder design is partitioned
into source-decoder and channel-decoder components which are the inverse operations
of those of the encoder.

The partitioning of the encoder allows the design of each component to be con-
ducted independently. The remainder of this text is devoted to the design of the
source coder. We make the facilitating, albeit unrealistic, assumption that the chan-
nel is errorless. That is, we assume that the channel faithfully transfers the channel

symbol from the encoder to the decoder, so that C = C. Consequently, we assume
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Source Encoder Decoder Receiver

Communication System

Figure 2.2: Block diagram of the simplified communication-system model

that we can design a perfectly inverting channel coder/decoder pair so that Y =X in
Figure 2.1. Furthermore, since Y is an estimate of X that differs only due to effects of
the source coder/decoder pair, we will denote Y as X in the remainder of this docu-
ment. These assumptions result in a simplified communication-system model, shown
in Figure 2.2, that allows us to focus on the design of the source coder while ignoring
channel behavior. The source coder that we design using this simplified model may
later be combined with a sophisticated channel-coding scheme as necessary to combat
any deleterious effects of the channel.

As stated before, if we are interested in the behavior of the communication system
at only one time, we will model the source as a random variable X. Consequently, the
output of the communication system is also a random variable, namely X. However,
in most realistic cases, it is the performance of the system over a period of time that
is of interest. Thus, we will usually consider the source to be a sequence of random
variables; i.e., a random process X,,, where n is a discrete time index. The output
of the communication system is also a random process, X,. In the next chapter,
we present some concepts from information theory that use random processes to
measure quantitatively the flow of “information” from the source to the receiver in
our communication-system model.

12



CHAPTER 3

INFORMATION THEORY

As mentioned in the previous chapter, random variables and random processes
are the foundation of the model we will use in the analysis of real communication
systems. This chapter presents several mathematical mechanisms that operate on
such random variables and random processes. As we discuss below, these concepts,
when applied to communication-system models, provide a concrete means of quan-
tifying “information,” the abstract notion of what is transferred from the source to
the receiver during communication. Not surprisingly, the field of mathematics from
which these ideas spring is known as information theory.

Information theory had its genesis in the classic paper [7] by Shannon. The
concepts discussed in this chapter can be traced to that paper; however, the pre-
sentation given here follows the somewhat more accessible treatment given by Cover
and Thomas [8]. Our discussion will be brief and no proofs will be given; for a more
thorough presentation, refer to Cover and Thomas [8] or Gray [9]. In this chapter, we
first define the key elements of classic information theory that will be useful later and
follow with some of the resulting implications toward communication systems. More
precisely, in Sections 3.1 and 3.2, we define, respectively, the entropy of a discrete
random variable and the entropy rate of a discrete random process. We conclude this

13



chapter by considering, in Section 3.3, the theoretical performance limits of noiseless
coding of discrete random processes as dictated by classic information theory. The
coding of continuous random processes will be investigated later in the Chapter 4
when we present rate-distortion theory, an extension of classic information theory to

the more general case of lossy coding.

3.1 Discrete Entropy, Differential Entropy, and Mutual In-
formation

The basic measure of the information content of a random variable is called entropy
[7, 8]. Although it can be argued that a single mathematical expression cannot
possibly capture all the meaning of the concept of “information,” the definition of
entropy, as given below, does have many of the properties that, by intuition, a measure
of information should possess [8]. We first consider the case of the entropy of a discrete
random variable.

Assume that X is a discrete random variable with finite alphabet X and pmf
px(x) for each x € X. The discrete entropy [8] of random variable X is defined as

H(X) % =) px()logypx(z). (3.1)

TeX

Since the logarithm in Equation 3.1 is to the base 2, the units of discrete entropy are
considered to be “bits” [8]. In order that events of zero probability do not affect the
discrete entropy, we follow the usual convention that 0log, 0 2 0. The discrete entropy
will sometimes be called simply entropy when no confusion may result between it and
differential entropy, the corresponding quantity for continuous random variables which

we will discuss below.
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For any discrete random variable X, the following expression holds:
0 < H(X) < log, ||, (3.2)

where |X| is the number of symbols contained in finite alphabet X'. Equality on the
left of Equation 3.2 is achieved if and only if px(x) = 1 for one x € X. That is,
if a symbol is certain to occur, the entropy, and thus the “information,” contained
in the random variable is zero. Equality on the right of Equation 3.2 is achieved if

and only if random variable X is a uniform random variable, in which case px(z) =

1

¥ for all z € X. We see that the amount of information conveyed by a random

variable is tied to its “randomness” or “uncertainty” —the more random the variable
is, the more “information” will be required to describe its value. Maximum entropy
is achieved when a random variable has maximum “randomness;” i.e., when it is
uniformly distributed.

Several definitions involving multiple discrete random variables follow directly
from Equation 3.1. The joint entropy [8] of two discrete random variables X and Y
is

H(X’ Y) £ _ZZPXY(J:’:U) logQPXY(xay)’ (33)

zeX yeY

where pxy (z,y) is the joint pmf of the two random variables. The joint entropy is

less than or equal to the sum of the entropies of the individual random variables; i.e.,
H(X,Y) < H(X) + H(Y), (3.4)

with equality if and only if X and Y are independent. It follows from Equation 3.3

and the definition of a random vector (Section 2.1) that the entropy of a discrete
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random vector X is

2 =) px(x) log, px (x). (3.5)

xeX

The conditional entropy [8] of discrete random variable Y when given discrete random
variable X is

HY|X)2 =3 pxyv(z,y)logpy x (]| X = z), (3.6)

reX yey

where py| x(y | X = z) is the conditional pmf of ¥ given the event that random vari-
able X equals z.
We now turn to the case of a measure of information for continuous random

variables. We define the differential entropy [8] of continuous random variable X as

h(X) = - g fx () log, fx (x) da, (3.7)

where Sx is the support set of X, the set of points where fx(z) > 0. As in the case
of discrete entropy, differential entropy has the units of “bits;” however, differential
entropy may be negative or infinite in some cases [3]. Although such values of dif-
ferential entropy may be counterintuitive, they should not be interpreted as meaning
that the random variable has negative or infinite “information” content. Differential
entropy is a relative scale of information that has no absolute “zero” value. On the
other hand, discrete entropy is an absolute scale; this fact is one of the most important
differences between the discrete and differential entropies.

The entities for multiple continuous random variables corresponding to Equa-

tions 3.3 through 3.6 are, as expected, the joint differential entropy [8],

h(X,Y) / fxv(z,y)log, fxv(z,y) dz dy, (3.8)

Sxvy
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the differential entropy of a continuous random vector,

h(X) £ - g fx(x) log, fx (x) dx, (3.9)

and the conditional differential entropy [8],

R(Y | X) 2 / fxv(z,y)logy fy x(y| X = ) dz dy. (3.10)

Sxy

The entropy (discrete or differential) of a random variable gives a measure of the
amount of information possessed by that one random variable; the mutual information
is a measure of the amount of information that one random variable has about another

random variable. We define the mutual information [8] of discrete random variables
X and Y as
ZZPXY z,y log2 ( Pxr(@y) (3.11)
TEX yeY Dy (v)
From elementary operations involving Equation 3.1 and the properties of pmf’s, we
have the following set of relationships among mutual information and discrete entropy:
I(X;Y)=1(Y; X)
=HX)-H(X|Y)
=HY)-HY|X) (3.12)
=HX)+HY)—-H(X,Y)
> 0.

The mutual information between two continuous random variables is

fxy(z,y)

@) dz dy. (3.13)

I(X Y / fXY T,y 10g2

Sxy
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The relations between mutual information and differential entropy are the same as
those for discrete entropy:
I(X;Y)=I1(Y; X)
=h(X)—-h(X]Y)

= h(Y) — h(Y | X) (3.14)

We will occasionally need to express the mutual information between a contin-
uous random variable X and a discrete random variable Y. We define the mutual

information in this case as
I(X;Y)2 H(Y)-H(Y|X), (3.15)
where
HY[X)2 — [ fx(@) [ZpY|X<y|X — 2)log, py x(y| X = )| da
Sx yey (3.16)
and py|x(y | X = z) is the conditional pmf of Y given that X =z [3].

The discrete and differential entropies measure the information of random vari-
ables. However, as discussed in Section 2.3, we will usually be interested in using
random processes in our communication-system model. The next section extends the
ideas of this section to define the “information rate” of discrete random processes.

The case of information rates for continuous random processes will be treated later

in Chapter 4.
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3.2 Entropy Rates of Discrete Random Processes

The entropy rate of a discrete random process gives an idea of the average rate at
which the source produces information. More accurately, the entropy rate describes
how fast the entropy of a sequence of discrete random variables grows as the length
of the sequence increases [8].

The entropy rate [8] of discrete random process X, is defined as

H(X,Xy,..., X
:}C(Xn)é lim ( 1, A2, ) N)

when the limit exists. If the random process is stationary as defined by Equation 2.6,
it can be shown that the limit in Equation 3.17 always exists [8, 6]. By Equation 3.4,

we then have
) 1
H(Xa) < Jlim ZH(Xi). (3.18)
However, H(X;) < log, |X| by Equation 3.2. Thus, for a stationary process,
H(X,) < log, |X]. (3.19)

If a stationary process is iid as described in Section 2.2, then, due to equality in

Equation 3.4, the entropy rate becomes

H(X, Xy,..., X
%(Xn):]\}j._r)réo ( 1, ]2\’7 Y N)

= H(X)). (3.20)
H(X;) is commonly called the first-order entropy of the random process and is oc-
casionally used as an approximation of the entropy rate of a random process when

the entropy rate is unknown or not calculable. This approximation is exact when the

process is iid.
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The entropy rate of Equation 3.17 is defined for all discrete random processes for
which the limit exists. By itself, Equation 3.17 has very little significance; however,
in the next section, we will see that the entropy rate of a stationary process provides
a lower bound on the average number of bits per symbol achievable by any noiseless
coding of the process. It is exactly because of this source-coding property that the

entropy rate is considered to be the average rate of information of the source.

3.3 Noiseless Source Coding of Discrete Random Processes

A source code, Cx = (X,C, (), for discrete random variable X consists a mapping,

¢, from the finite alphabet X to a finite set, C, of finite-length strings, ¢ [8]. That is,
C={c:c=((z),x € X}. (3.21)

The strings c are called codewords and the set C is called the codebook. The codewords
are variable-length strings constructed, in general, from a D-ary alphabet, D. For the
remainder of this text, we will assume a binary alphabet, D = {0,1}. Additionally,
we will consider only the case that source code Cx is a prefir code; i.e., ( is a one-
to-one mapping, and each codeword in the codebook is guaranteed not to be a prefix
of another codeword [8]. Prefix codes allow the concatenation of codewords into
a stream that can be uniquely decoded into the original stream of source symbols,
a property that will be important when we look at the coding of discrete random
processes below.
The average length of the prefix code Cx for discrete random variable X is

L(€x) £ EI(C(X)] =) px(2)I(¢(2)), (3.22)

reX
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where [(((x)) is the length (in bits) of codeword ¢ = ((z). An optimal prefix code,
C%, is one that achieves the minimum average length of all prefix codes for random
variable X.

The following well known result, due to Shannon [7], states the performance

achievable by an optimal prefix code.

THEOREM 3.3.1 (SHANNON’S SOURCE CODING THEOREM)
The average length of an optimal prefix code for a discrete random variable is within

1 bit of the entropy of the random variable. That is,

H(X) < L(Cx) <H(X)+1. (3.23)

A simple method for constructing an optimal prefix code was developed by Huffman
[10]; the Huffman code is one type of coding technique known as entropy coding. The
Huffman code attempts to assign codewords with short lengths to those symbols in
X with a high probability of occurrence so that the average length of the code is close
to the entropy of the random variable. Note that this average length is an ensemble
average—it is the expected length over many instances of the random variable.

Up to this point, we have discussed the coding of a single discrete random variable.
The more interesting and practical case is the coding of a discrete random process.
However, entropy-coding techniques, including the Huffman code, can be applied to

this case as well [8]. We simply block N random variables of random process X,
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together into a random vector
(3.24)

X: (Xl,XQ,...,XN) EXN

We then define a new prefix code, €% = (XV,C’,(’), that maps from alphabet XV

to new codebook C’ of codewords for the random vector. The average length of this

new code, per original source symbol, is defined as
(3.25)

(€x) £ —E (¢ Z px(x
xEX N
An optimal prefix code for random vector

L(€%) will be called the rate of code €}

X will have, from Theorem 3.3.1, a rate satisfying
! HX) <L) < =HX)+ ! (3.26)
>~ X)) > N N s .
or, equivalently,
H(X:, X,,..., X 1
( 1, A2, ) N) + N (327)

11(4<154(27a‘(N) '
N = ( X) = N

If the entropy rate of random process X, exists, then we may take the limit as N — oo
n

of Equation 3.27 to find that the rate of an optimal coding of random process X, is
the entropy rate; i.e
(3.28)

L(C,) = H(Xn).

The entropy rate will exist if X,, is stationary. Thus, the entropy rate is the
- 7

lower bound on the rate of any coding of a stationary discrete random process. If

additionally, the process is iid, then, by Equation 3.20
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L(Cy) = H(X)). (3.29)

Thus, the first-order entropy is the lower bound on the rate of any coding of a discrete
iid random process.

At this point, one caveat is in order. It is common that the optimal code rate of
an iid random process, L(C% ) of Equation 3.29, is confused with the optimal average
code length of random variable X;, L(C%,) of Equation 3.23 [11]. Equation 3.29 states
that optimal entropy coding, such as Huffman coding, applied with infinite blocking
to the entire random process will yield a rate equal to the entropy. However, in most
practical cases, designing a Huffman code becomes prohibitively complicated for even
a small block length N. Thus, the usual approach for coding an iid process is to
apply a Huffman code for each symbol separately taking advantage of the fact that,
because Huffman coding produces prefix codes, the concatenation of the codewords
can be decoded to the original stream of source symbols. Although Huffman coding
is optimal for the coding of each individual symbol, it does not necessarily produce
an optimal coding of the iid random process when applied symbol by symbol. It is
for this reason that other entropy-coding techniques, such as arithmetic coding [12]
and textural-substitution methods (e.g., [13, 14]), often yield better performance in
practice.

In this section, we have been concerned with the lossless or noiseless coding of a
discrete random process. That is, referring to the communication system of Figure 2.2,
the encoder produces a stream of codes with average length L(C% ) = H(X,) bits
per source symbol. These codes are sent to the decoder over the lossless channel.

The decoder perfectly reconstructs the original source process so that X, = X,.
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Thus, the entropy rate gives a measure of the amount of information that must be
communicated between the encoder and the decoder for lossless coding. The following

theorem expresses this idea more explicitly.

THEOREM 3.3.2

In order to noiselessly communicate stationary, discrete random process X, with
entropy rate H(X,) through the communication system of Figure 2.2, the encoder
must send at least an average of H(X,) = H(X,) bits per source symbol to the

decoder. It is assumed that the communication occurs over a lossless channel. The

rate of the communication system is then defined to be H(X,,).

Theorem 3.3.2 is the special case of the well known joint source-channel theorem [8]
applied to a lossless channel.

In the next chapter, we consider the case of continuous random processes. Al-
though one may define a differential entropy rate for continuous random processes
(see Cover and Thomas [8]), such a definition lacks a source-coding implication (Equa-
tion 3.28) similar to that established here for discrete random processes. Since an
infinite number of bits is needed to specify the value of a continuous random variable
(i.e., the discrete entropy of a continuous random variable can usually be considered
to be infinite [3]), it is not possible, in general, to code a continuous random process
without introducing some distortion. In the next chapter, we will investigate the the-
oretical tradeoffs between distortion and code rate that arise from allowing imperfect

reconstruction at the decoder.
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CHAPTER 4

RATE-DISTORTION THEORY

One of the key results of Shannon’s development of information theory as pre-
sented in Chapter 3 is the fact that a stationary, discrete random process may be
coded with a finite number of bits per source symbol in such a way that the original
process may be exactly reconstructed from the code. As we saw in Chapter 3, the
lower bound on this code rate is the entropy rate, or, if the source is iid, the discrete
entropy. In this chapter, we turn to the case of continuous random processes. Since
it takes an infinite number of bits to describe exactly a continuous random variable,
noiselessly coding a continuous random process requires, in general, an infinite rate.
However, as we will see below, it is possible to code a continuous random process
with a finite rate if one allows some amount of distortion to be introduced between
the original source and the output of the decoder. Rate-distortion theory provides a
body of mathematics that describes this tradeoff between rate and distortion in the
coding of a continuous random process.

Rate-distortion theory was originally developed by Shannon in the second of his
classic papers [15]. Although Shannon’s investigation was confined to iid sources,
his results have been extended by others to more general cases. These more general
results may be found in the book by Berger [6], one of the most complete references
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on rate-distortion theory. Indeed, most of the discussion found here (Sections 4.1
through 4.4) merely summarizes the key results found in Berger’s book. The reader
should consult the book itself for proofs and other details missing here.

The organization of this chapter is as follows. In Section 4.1, we discuss distortion
measures, mechanisms that allow us to quantify the amount of distortion introduced
by a coding of a continuous random process. Then in Sections 4.2 and 4.3, we
introduce the concepts of the rate-distortion and distortion-rate functions, the heart
of rate-distortion theory. In Section 4.4, we present theorems that provide the rate-
distortion and distortion-rate functions operational significance toward the coding of
stationary, continuous random processes. We conclude the chapter with Section 4.5
which reviews the few rate-distortion results and source-coding theorems available for

nonstationary processes.

4.1 Distortion Measures

To code a continuous random process, we allow the decoder to make an inexact
approximation to it. In order to judge the “closeness” of this approximation, we
introduce a quantitative rule that measures the amount of difference between the
original source process and the process that is output from the decoder. This rule is
known as a distortion measure.

More specifically, suppose that the encoder input is a sequence of N values; in

other words, a vector in N-dimensional Euclidean space,

x = (T1,%9,. .., ZN)- (4.1)

The decoder outputs an N-dimensional approximation vector, X. The nonnegative
word distortion measure d(x,%X) measures the “difference” between the two vectors.
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Many word distortion measures of interest can be expressed as

dx%) = 5 > pla ), (4.2)

where p(z, %) is a scalar distortion measure called the per-letter distortion. A word

distortion measure of the form of Equation 4.2 is known as a single-letter distortion

measure [2] since it measures the average distortion per component between two

vectors.

The most commonly used distortion measure is the squared error, defined as
d(x,%) £ [|x - %|° = (x — %) (x —%) = ) _(z; — )" (4.3)
i=1
The squared-error distortion measure can be made into a single-letter distortion mea-

sure by dividing it by NV, in which case it becomes the mean squared-error distortion

(MSE).

4.2 The Rate-Distortion Function

The rate-distortion and distortion-rate functions for a given continuous random
process describe the tradeoff between the rate needed to code the random process and
the distortion incurred by the coding. In this section, we define the rate-distortion
function for a continuous random process following the discussion given in Chapters 4
and 7 of the book by Berger [6]. We delay the definition of the distortion-rate function
to Section 4.3 and the more important source-coding properties implied by the rate-
distortion function to the theorems in Sections 4.4 and 4.5.

We define the rate-distortion function as the minimal mutual information achieved

by a mapping subject to a constrained distortion. More precisely, suppose we have
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N successive values from continuous random process X,, which we group into the V-
dimensional continuous random vector X = (Xi, Xs,..., Xy). We assume that the
decoder outputs N values, vector Y, from another continuous random process Y,,.
The effect of the joint operation of the encoder and the decoder is to assign an output
sequence Y to each input sequence X. This assignment is described probabilistically
by ¢v x(y | X = x), the conditional density of random vector Y given random vector
X.

For each gy |x(-), there is a joint density between X and Y as determined by

Bayes’ Theorem,

fxy(x,y) = fx(x)gy x(y | X =x), (4.4)

where fx(x) is the density of X. The single-letter distortion measure d(X,Y) is
a random variable over this joint ensemble. The expected value of this distortion

measure is called the average distortion and is a function of ¢y |x(-),

D(q) 2 Eld(X,Y)] = / fxx (%, y)d(x, y) dx dy -
4.5
= //qy|x(y|X = x) fx(x)d(x,y) dx dy.

A specific gy x(+) is D-admissible if and only if D(¢q) < D. The set of all D-admissible

conditional probability assignments is

Qo = {av|x(y | X =x): D(q) < D}. (4.6)

The rate-distortion function [6], R(D), for a given continuous random process, X, is

then defined as

R(D) £ lim Ry(D), (4.7)

N—o00
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where

1
Ry(D) & — inf I(X;Y), 4.8
N( ) NQY\):?')EQD ( ) ( )

and I(X;Y) is the mutual information between N-dimensional random vectors X
and Y. It can be shown that the limit in Equation 4.7 always exists when X,
is a stationary random process [6]. We will see in Section 4.5 that this limit also
exists for certain nonstationary sources. Consequently, the rate-distortion function is
well-defined for all stationary random processes as well as for certain nonstationary
processes.

One should note that the rate-distortion function as defined above has very lit-
tle real meaning until appropriate source-coding theorems have been proven. It is
only then that the rate-distortion function for a source can be considered to be the
minimal rate at which the encoder must send information to the decoder to allow
reconstruction at a given amount of average distortion [16]. In the Section 4.4, we
will review source-coding theorems that indeed provide this intuitive source-coding
property for stationary, continuous random processes. Then in Section 4.5, we will
present the limited source-coding results that exist for certain nonstationary random
processes. First, however, we define the distortion-rate function which is the inverse

of the rate-distortion function and the topic of the next section.

4.3 The Distortion-Rate Function

The distortion-rate function defined in this section is the inverse of the rate-
distortion function presented in the previous section. That is, the distortion-rate
function is defined as the minimum distortion achievable by a mapping subject to
a constrained rate. More precisely, suppose we have stationary, continuous random
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process X,, whose values are grouped into N-dimensional random vector X as before.
Again, we have a probabilistic assignment, gy |x (y | X = x), and an average distortion

for single-letter distortion measure d(X,Y),
Dlg) = B, )] = [ [ frvxy)diey) dxdy
(4.9)
— [[ avix(y 1X = %) felx)dx, ) dxay.

A specific gy |x(-) is R-admissible if and only if the mutual information per source
symbol is less than or equal to R; i.e., the set of all R-admissible conditional proba-

bility assignments is
1
Qr 2 {qYX(y‘XZX) : NI(X;Y) gR}. (4.10)

The distortion-rate function [6], D(R), for X,, is then

D(R) & Jim Dy(R) (4.11)
where
Dy(R) £ inf  D(g). (4.12)
av | x(")EQR

The distortion-rate function as defined in this section and the rate-distortion func-
tion as defined in the previous section are inverses of each other [3, 17]. That is,
Ry = R(Dy) for some Dy and Ry if and only if Dy = D(Ry). The fact that the two
functions are equivalent yet are defined differently suggests two possible approaches
towards the coding of a continuous random process. We will explore this issue further

in Section 4.4.
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4.4 Source Coding of Stationary, Continuous Random Pro-
cesses

In this section, we review the source-coding theorems for stationary, continuous
random processes. We first assume that the process is also ergodic and return to
the more general case later. Briefly, a stationary, ergodic process is one whose time
averages approach its ensemble averages [2, 4]. For example, the time average of any
instance of a mean-ergodic stationary process converges to the ensemble mean of the
process. That is, the ensemble mean, n = n(t) = E [X{], of the process X, is invariant
in time due to stationarity, and the time average of the process converges to it in the

mean-square sense [2, 4]:

N
%;Xt — (4.13)

In general, there exist two different approaches to source coding of a station-
ary, ergodic source: the constrained-distortion and constrained-rate approaches. The
constrained-distortion approach, covered in Section 4.4.1, involves limiting the al-
lowed distortion and then minimizing the rate of the code. As can be expected, the
results derived will be related to the rate-distortion function as defined in Section 4.2.
The second, constrained-rate approach, involving the distortion-rate function, will be

treated afterwards in Section 4.4.2. We delay the discussion of source coding for

stationary, nonergodic processes to Section 4.4.3.
4.4.1 Constrained-Distortion Source Coding

In this section, we present theorems for the constrained-distortion approach to
source coding. That is, we limit the allowed distortion and design our communication
system using the code with the smallest rate that meets this distortion requirement.
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More precisely, let random vector X = (X1, Xs,..., Xx) be the first N values
of stationary, ergodic random process X,. Let Cx = (C,() be a block source code
for random vector X, where C = {cy,cs,...,ck} is a codebook of K N-dimensional

codewords. The function, (, codes each X as the closest codeword in C; that is,

A~

X = ((X) £ argmind(X, c). (4.14)

ceC

Note that X is a discrete random vector. Suppose that the rate-distortion function,

R(D), for X,, is defined for single-letter distortion measure d(X, X),
and that there exists some « € R such that
E [p(X;, a)] < oo, Vi. (4.16)

This a is commonly called a reference letter. Equation 4.16 is a technical requirement
for the proofs of the following theorems [9, 18], and, as such, will not be discussed
further here. We will define the average distortion incurred by block source code Cx

as

D(ex) £ B [d(X, %)) = / Fr(x)d(x, C(x)) dx. (4.17)
and the rate, R(Cx), of the code as

R(ex) 2 %I(X; X). (4.18)

Because the mutual information measures the amount of information in common

between two random vectors, the rate, as defined by Equation 4.18, indicates the
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amount of information that must be conveyed to represent X as X. However, from
Equation 3.15, we can express the rate as

R(Cx) = %I (X;X) = %H(f{) _

1

NH(X | X). (4.19)

But since X is a deterministic function of X, H(X |X) = 0, and we have

1o 1
R(Cx) = H(X) < 55 log, K, (4.20)

where the inequality comes from Equation 3.2. Note that R(Cx), as given by Equa-
tion 4.20, becomes the entropy rate of discrete random process X,, when N is infinite.
Supposing that the above assumptions are valid for any positive N, we have the

following theorem.

THEOREM 4.4.1 (POSITIVE SOURCE-CODING THEOREM (BERGER [6]))
For any € > 0 and any D > 0 such that R(D) < oo, there exists a block source
code Cx for an N sufficiently large such that D(€x) < D, and + log, K < R(D) +e.

Consequently, by Equation 4.20, we have R(Cx) < R(D) + € for this Cx.

Theorem 4.4.1 is known as the positive source-coding theorem since it states the
existence of a block source code that has a rate no more than R(D) plus an arbitrarily
small quantity for a given distortion. The converse is also true, as is given in the

following theorem.

THEOREM 4.4.2 (NEGATIVE SOURCE-CODING THEOREM (BERGER [6]))
There exist no block source codes of average distortion E(G’x) < D, where D > 0,
with rate R(Cx) < R(D).
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Theorem 4.4.2 applies to block source codes of all block sizes N, finite or infinite. A
block source code with an infinite block size represents all coding methods that map
an infinite-length random process to an infinite-length code. Consequently, Theo-
rem 4.4.2 also applies to any coding method, including those that are not block-based
[6].

Theorem 4.4.1 applies to the first N values of random process X,, where we must
choose N sufficiently large so that the rate satisfies R(Cx) < R(D) + ¢ for the desired
distortion, D, and accuracy, €. However, because of the stationarity of X,,, we can
use this theorem to implement a coding for the entire random process. The details
of this coding method follow.

We will denote our coding for stationary random process X,, as Cx,. The output
of this code will be discrete random process Xn, which will be stationary due to the

stationarity of X,,. We will define the rate of this code as

J— A~

1 PN
R(exn) = lim NI(XlaXQ;aXNaXI;XQa;XN) (421)

N—oxo

We see that this definition is simply the limit as [V goes to infinity of Equation 4.18.
Consequently, by Equation 4.20, we can express the rate of our random-process coding

as

~

— 1 A~
R(GXn) = lim NH(XMXQ,;XN); (422)

N—o0

which is simply the entropy rate of the coded process; i.e.,
R(€x,) = H(X,). (4.23)
The distortion measure of interest for our random-process code is the average
single-letter distortion over all time of the random process,
D(€x,) 2 lim E [d(x, X)} . (4.24)
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However, since d(X, X) is a single-letter distortion measure, we have

3 axs X)]

=1

D(Cy.) = lim E [d(x, X)] = lim E

N—o N—ox

(4.25)

i A5 )

where p(X;, X;) is the per-letter distortion. Because of the stationarity, E [p(X,-, XZ)]
is independent of time 7, so the average single-letter distortion is equal to the average

per-letter distortion,

A~

D(ex,) = B [p(X;, X1)] £ p(X,, X,). (4.26)

The coding of the random process operates as follows. We partition source process
X, into successive blocks of N values and use the same optimal code, C%, whose exis-
tence is guaranteed by Theorem 4.4.1, to code each block. Because X, is stationary,
the successive codewords produced by the code form a stationary discrete random-
vector process whose entropy rate is at most log, K bits per vector by Equation 3.19.
Consequently, the entropy rate of the output process, H(X,), is at most ~log, K.
Additionally, H(X,) is at least R(D) by Theorem 4.4.2. By combining the above

observations with Theorem 4.4.1, we have
_ N 1
R(D) < R(Cx,) = H(X,) < N logo K < R(D) +e. (4.27)

Therefore, the rate of our random-process code is between R(D) and R(D) + €
Since we have assumed that X, is ergodic, we have that the time-average per-letter

distortion converges to the ensemble average per-letter distortion; i.e.,

~ 1 N
P(Xn, Xn) & lim —2 % 7 p(Xi, Xi) = p(X, Xn). (4.28)



But the time-average per-letter distortion can be expressed as a time-average single-
letter word distortion on the random vectors into which X, is partitioned; i.e.,
1
P(Xn, Xn) = D(Xy, Xy) = Ilggoled(xjax]): (4.29)
J:
where X; is the random-vector process formed from our partitioning of the original

source, X,. Since X, is stationary and ergodic, so is X;. Consequently, we have
D(X,X,) = E [d(x,-, Xj)] = D(C). (4.30)

Since the code, C%, used by the encoder guarantees that D(C%) < D, we have

J— A

D(eXn) = ﬁ(Xna Xn) <D (431)

for our random-process code.

Now, by increasing the block size IV, we can make € in Equation 4.27 as small as
desired [6]. Consequently, we see that the rate-distortion function, R(D), is not only
a lower bound on the rate for any coding method (as stated in Theorem 4.4.2), but
is actually achievable by a block source code with infinite blocking. Therefore, block
source coding is, in this sense, optimal—no other coding method achieves a lower rate
for a given distortion. One should note that this optimality is only asymptotic: it
may be possible for other coding methods to perform better than block source coding
when an infinite-length observation of the source is not allowed.

In this section, we have determined that constrained-distortion coding using a
block source code is asymptotically optimal for a stationary, ergodic source. In the

next section, we present the corresponding results for constrained-rate coding.
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4.4.2 Constrained-Rate Coding

In this section, we present theorems for the constrained-rate approach to source
coding. That is, we limit the allowed rate and design our communication system
using the code with the smallest distortion that meets this rate requirement.

Let us assume that random vector X consists of the first N values of station-
ary, ergodic random process X, as in Section 4.4.1. Suppose that we define a block
source code Cx as before, and the average distortion, D(Cx), and rate, R(Cx), of
this code as was done in Equations 4.17 and 4.20, respectively. Suppose that the
distortion-rate function, D(R), is defined for X,, and that the reference-letter condi-

tion (Equation 4.16) holds. We then have the following theorems.

THEOREM 4.4.3 (POSITIVE SOURCE-CODING THEOREM (GRAY [3]))
For any 6 > 0 and any R > 0, there exists a block source code Cx for an N sufficiently
large such that

— 1. 1
R(Cx) = NH(X) < ylog K <R (4.32)

and

Diex) 2 B [d(X,%)] = [ fetx)dix, ) dx s
< D(R

)+ 0.

THEOREM 4.4.4 (NEGATIVE SOURCE-CODING THEOREM (GRAY [3]))

There exist no block source codes of rate R(Cx) < R where R > 0, with distor-
tion D(Cx) < D(R). As with Theorem 4.4.2, this result is applicable to all coding
methods, including those which are not block-based.
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To make use of these theorems in the coding of a stationary, ergodic random
process, we can design a constrained-rate random-process code similar to the
constrained-distortion code of Section 4.4.1. Again, we partition random process
X, into successive N-dimensional random vectors X and use the optimal code, C%,
whose existence is guaranteed by Theorem 4.4.3, to code each vector. We choose N
large enough so that the average distortion satisfies D(C%) < D(R) + § for the de-
sired rate, R, and accuracy, 6. The resulting average single-letter distortion, D(Cx, ),

defined in Equation 4.24, satisfies
D(R) < D(€x,) < D(R) +3, (4.34)

and the rate of the code, R(Cx, ), defined in Equation 4.21, satisfies

R(Cx,) < R. (4.35)

As before, we can make ¢ arbitrarily small by increasing the block size N. Conse-
quently we see that the distortion-rate function, D(R), is not only a lower bound on
the achievable distortion for any coding method with rate not more than R, but is
achievable by a block source code of infinite blocking. Therefore, block source cod-
ing is asymptotically optimal in the distortion-rate sense in the same way that it is
optimal in the rate-distortion sense, the result shown in the previous section.
4.4.3 Source Coding of Stationary, Nonergodic Random Pro-
cesses

To this point, we have been concerned with only stationary processes that are also

ergodic. We now remove the assumption of ergodicity and review the results that are

available for stationary, nonergodic sources.
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To establish source-coding theorems for stationary, nonergodic sources, it is com-
mon to invoke the ergodic-decomposition property (see, for example, [19, 3]) which
states that every stationary, nonergodic process can be considered to be composed of
separate stationary, ergodic sources. That is, a nonergodic process can be considered
to randomly select a source from a collection of stationary, ergodic processes and
then produce output from that process for all time [3]. The ergodic-decomposition
property of stationary sources makes it possible to adapt the positive source-coding
theorems of the previous sections to nonergodic sources to derive the following results.
One should note that the negative source-coding theorems (Theorems 4.4.2 and 4.4.4)
can be shown to apply to nonergodic sources directly as previously stated [19].

Gray and Davisson [19] have shown that the optimal fixed-length block code that
has the smallest distortion for a given rate does not achieve the distortion-rate func-
tion; rather the optimal distortion for a given rate was determined to be a weighted
average of the distortion-rate functions of the individual processes of the ergodic de-
composition. By fized-length block code, we mean a block source code, Cx, which

produces fixed-length codewords and whose average rate, R(Cx), is defined as

B(ee) & L

R(Cx) N log, K. (4.36)

Shields et al. [20] and Leon-Garcia et al. [21] removed the assumption of fixed-length
coding, allowing the codewords to have variable length and, consequently, defining
the rate of the code as Equation 4.18. It was then determined that the distortion-rate
function was indeed achievable by a variable-length code [20, 21].

These results show that block source coding is as equally powerful for stationary,
nonergodic sources as it is for stationary, ergodic sources. The removal of the assump-
tion of ergodicity does not diminish the significance of the source-coding theorems,
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although it does complicate their proofs somewhat. On the other hand, removal of
the stationarity assumption does affect the strength of those theorems that can be de-
rived in such a case. In fact, only weakened source-coding theorems have been proven
to date for nonstationary sources, and then only under certain additional restrictions,
as we shall see in the next section.

4.5 Rate-Distortion Theory for Nonstationary, Continuous
Random Processes

Up to this point, the discussion in this chapter has been limited to the consider-
ation of stationary, continuous random processes. We now remove the assumption of
stationarity and review the rate-distortion results available for nonstationary sources.
Because the assumptions of stationarity and ergodicity simplify the derivation of
source-coding theorems, the results available for nonstationary sources are very few
and usually concern only limited classes of nonstationary sources.

In general, a complete treatment of rate-distortion theory for a particular source
involves the establishment of the existence of the rate-distortion function (defined
similarly to Equations 4.7 and 4.8) or, equivalently, the distortion-rate function (de-
fined similarly to Equations 4.11 and 4.12), as well as the derivation of both positive
and negative source-coding theorems. The source-coding theorems provide the rate-
distortion and distortion-rate functions real significance toward the design of com-
munication systems by showing that the optimal rate-distortion or distortion-rate
performance is achievable by a particular coding method. We will see below that, to
date, it has been possible to derive only limited source-coding theorems for only a

few classes of nonstationary sources.
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We proceed to review the results that have been reported for nonstationary ran-
dom processes. The discussion here will be brief; it is suggested that the interested
reader refer to the extensive source-coding summary by Kieffer [22], or to the indi-
vidual reports themselves, for more details. In Section 4.5.1, we present the various
source-coding results that have been derived for a variety of nonstationary processes.
Then, in Section 4.5.2, we describe in greater detail the theory that has been devel-
oped for the Wiener process, a nonstationary process that will be used extensively to
obtain experimental results in the remainder of this text.

4.5.1 Source-Coding Results for Various Nonstationary Pro-
cesses

Gray and Saadat [23] and Gray [9] have reported source-coding results for asymp-
totically mean-stationary, ergodic sources. Briefly, an asymptotically mean-stationary
random process is a nonstationary random process with a continuous probability den-
sity that, when averaged over all time shifts, converges to a stationary density. The
stationary process described by this stationary density is known then as the stationary
mean process of the asymptotically mean-stationary process. Gray and Saadat [23]
have shown that the optimal block source code for an asymptotically mean-stationary
process achieves the distortion-rate function of the corresponding stationary mean
process.

Gray [16] derived a parametric expression, subsequently corrected by Hashimoto
and Arimoto [24], for the rate-distortion function of Gaussian autoregressive pro-
cesses. Gray [16] also proved a limited version of the positive source-coding theorem,
showing the existence of a block source code for a sufficiently large block size N with

rate arbitrarily close to the rate-distortion function for a given distortion. Gray’s
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theorem is unfortunately limited in that one cannot achieve optimal coding for the
process by using the same code for each successive block of N values as was done
for the coding of stationary processes in Section 4.4.1. In this way, Gray’s positive
source-coding theorem is strictly “one-shot.” Berger [18], however, was able to prove
a stronger positive source-coding theorem that overcomes this limitation by consid-
ering the Wiener process, a special case of the Gaussian autoregressive process. As
we will use Berger’s results extensively in the remainder of this text, we will present
them in greater detail in Section 4.5.2.

However, before turning to Berger’s results for the Wiener process, it is worth
mentioning two other reports pertaining to the coding of nonstationary processes. Ziv
[25] has obtained an expression for the optimal distortion achievable for a given rate
for the coding of an individual sequence, and Kieffer [26] has extended this formula
to more general nonstationary sources. Whereas the results mentioned previously in
this section are generally applicable to continuous as well as discrete processes, Ziv

and Kieffer’s results are limited to discrete processes.
4.5.2 Source-Coding Results for the Wiener Process

In this section, we present the rate-distortion results obtained by Berger [18] for
the Wiener process, a special case of the Gaussian autoregressive process. The Wiener

process is defined as
Xo=Y 7, n=12.., (4.37)

where Z, is an iid random process whose random variables, Z;, are independent,

zero-mean Gaussian random variables with variance 0% > 0 [27]. Note that we may
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equivalently express the Wiener process as a recursion,
X, =X,_1+ Z,, n=12..., (4.38)

where we set Xy = 0 as an arbitrary starting point of the recursion.
Berger [18] has obtained a parametric expression for the rate-distortion function
of the Wiener process. Suppose we define the rate-distortion function as was done in

Section 4.2. Then, according to Berger,

2

1 2
R(D) = 5 log, <%> , 0<D< UZ' (4.39)

For D > ”4—2, the rate-distortion function is given parametrically by

D) = (1) [29 arcsin <20W> +(3) \/m} , (4.40)

™

- (2) e s () e () om (3),

where 6 is the variable of parameterization, and Cy(y) is Clausen’s second integral,

Coly) = — /0 " log, [2 sin (%)] dt. (4.42)

Figure 4.1 plots R(D) as given by Equations 4.39 through 4.41 for a Wiener process
with several variances. To create Figure 4.1 for D > ‘1—2, we trace out the R(D)
curve by calculating both D(f) and R(f) for a number of @ values chosen from a
linear sequence. Additionally, in the calculation of each R value, we evaluate Cs(y)
numerically.

To show that the rate-distortion function is achievable by an optimal block code,
Berger [18] starts with the usual positive source-coding theorem, Theorem 4.4.1, and
makes the following observations. First, to code a block of N values of the process, it

is sufficient to code the process 7, along with the value of X, at the start of the block.
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Rate (bits/sample)

0 0.5 1 1.5 2 25
Distortion (MSE)

Figure 4.1: The rate-distortion function, R(D), for the Wiener process with variance
0% equal to %, 1, and 2.

2
However, since the process 7, is iid, the optimal code, C}, for the first NV values of
Z, will be optimal for the remaining blocks. All that is left is to code the sequence
of block starting values so that the total rate does not exceed R(D) + €. Berger [18]
has shown that a delta-modulation scheme can be devised to track the block starting
values under this rate constraint, thus establishing the positive source-coding theorem
valid for entire length of process X,,. This result is more powerful than the positive

source-coding theorem developed by Gray [16] for the Gaussian autoregressive process
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as it does not require a different optimal code for each block of N values of the
process. However, the negative source-coding theorem can be established under a
proof similar to the one for the corresponding theorem (Theorem 4.4.2) for stationary
sources [16], and is thus valid for both the Wiener process and the more general
Gaussian autoregressive process.

These observations conclude our initial discussion of the coding of continuous ran-
dom processes. In this chapter, we established the source-coding capabilities of block
source codes for various sources. In the next chapter, we explore vector quantiza-
tion, a source-coding technique related to block source coding that has been used

extensively in practice for the coding of continuous random processes.
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CHAPTER 5

VECTOR QUANTIZATION

In the previous chapter, we discussed the coding of continuous random processes.
Key to this discussion was the concept of a block source code mapping a vector of
values from a random process to a codeword chosen from a predetermined codebook.
In the case of stationary processes, it was shown that the block source code was
asymptotically optimal, achieving performance on the rate-distortion curve when the
vector length approached infinity. However, the theorems of Chapter 4 showed merely
the existence of optimal block source codes; no methods were presented for deriving
an optimal code for a given source. Additionally, any practical implementation of a
block-coding system will be constrained to use finite-length vectors and consequently
will not be capable, in general, of performance on the rate-distortion curve. In the
design of real communication systems, we need practical block-code design algorithms
using finite-length block sizes. We will be interested in evaluating the performance
these codes in terms of both rate and distortion. To address these concerns, we appeal
now to a coding technique known as vector quantization, which, as we will see later,
includes block source coding as a special case.

Vector quantization (VQ) is the generalization of scalar quantization to higher
dimensions [2]. Scalar-quantization techniques, which operate on one-dimensional

46



signals, grew out of efforts in the design of analog-to-digital converters, those elec-
trical devices which produce digital representations of analog signals. Many of the
ideas behind scalar quantization are equally applicable in higher dimensions; how-
ever, VQ, being more general, offers much greater source-coding potential than scalar
quantization.

In this chapter, we first present the basic mathematics that define the concept of
a vector quantizer in terms of a function of a random vector. Then, in Section 5.2,
we discuss optimal VQ, defining what it means for a vector quantizer to be optimal
and presenting conditions necessary for such optimality. In Section 5.3, we present a
model of a communication system using V(Q, define the concept of local optimality
of such a system, and then describe several practical VQ-design algorithms that,
although not guaranteed to produce optimal quantizers, do produce vector quantizers
with some form of local optimality. Finally, in Section 5.4, we extend these ideas
to communication systems that code random processes by blocking the process into
vectors and using a predesigned vector quantizer to code each vector. By predesigned,
we mean that the vector quantizer is completely designed beforehand and is not
modified during the coding of the random process. We will call this type of vector
quantizer nonadaptive V). The more general case of adaptive V@) (AVQ), our primary

topic, will be investigated later starting in Chapter 6.

5.1 Preliminary Definitions

In this section, we present the mathematical preliminaries behind the theory of

VQ. Most of the content of this section, as well as that of the rest of this chapter,
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is based on well known theory that is discussed extensively elsewhere; the reader is
referred to, in particular, the thorough book [2] by Gersho and Gray.
We define a vector quantizer [2], @, as a mapping from N-dimensional Euclidean

space, RY, to a finite subset, C, of RV,
Q:RY >, C c RN, (5.1)
Subset C, called the codebook, is composed of K codewords, c;, in RV,
C ={ci,co,...,CK}, c; e RV, (5.2)

Given an N-dimensional vector x € RY, the output of the vector quantizer is

another N-dimensional vector, X,
x = Q(x), x eC. (5.3)

Thus, the vector quantizer divides the space R" into separate regions with each
region being assigned a codeword from C to represent it. Mathematically, the vector

quantizer divides the space R into K partition regions, R;, defined as
R 2{xeR":Q(x) =c}, 1<i<K. (5.4)
From this definition, it follows that
URri=r" (5.5)
and
RiNR; =2, i # 7, (5.6)

so the set of R;’s form a partition of the space R" [2]. Additionally, if the vector
quantizer assigns vector x to region R;, x is reproduced as codeword c;. Consequently,
c; is sometimes called the reproduction vector for region R;.
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Associated with the vector quantizer is a vector distortion measure, d(x,X), which
measures the difference between two vectors. Distortions measures were thoroughly
discussed previously in Section 4.1; common distortion measures used in VQ systems
are the squared error and the mean squared error.

The definitions given thus far define vector quantizers in the most general sense.
Restricting these definitions somewhat produces classes of vector quantizers that will
be of interest later. We define a reqular vector quantizer [2] as a vector quantizer whose
partition regions, R;, are each convex sets, and whose corresponding reproduction

vectors, c¢;, are found within these sets. That is, if a € R; and b € R;, then

(1—Xa+ b e R, 0< A<, (5.7)
and

C; € Ri, (58)

for a regular vector quantizer for all 7. Additionally, we define a polytopal vector quan-
tizer [2] as a regular vector quantizer whose partition regions are bounded by segments
of hyperplanes surfaces in Y. Figure 5.1 illustrates examples of a nonregular and a
polytopal vector quantizer in two dimensions.

One might be lead to believe that, since polytopal vector quantizers are not as
general as nonregular vector quantizers, polytopal vector quantizers suffer in perfor-
mance when used to quantize a random vector. However, this is not always the case.
As we shall see in the next section, the class of polytopal vector quantizers perform
at least as well as the class of nonregular vector quantizers when the squared error

is used as the distortion measure. Indeed, necessary conditions for the optimality of
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(a) Nonregular (b) Polytopal

Figure 5.1: Examples of nonregular and polytopal vector quantizers in two dimensions

a vector quantizer under the squared-error distortion measure result in a polytopal
vector quantizer. We proceed now to the next section to further investigate these

optimality conditions.
5.2 Optimal Vector Quantization of a Random Vector

In this section, we discuss the optimal V(Q of a random vector. We will assume
throughout this section, as well as through the rest of this chapter, that the VQ
distortion measure is the squared error, unless otherwise specified. We start by as-

suming that we have an /N-dimensional continuous random vector, X, that is vector
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quantized to produce another random vector, X,

~

X = Q(X). (5.9)

Note that, since the codebook, C, associated with the vector quantizer is a finite set,
X is a discrete random vector.

We define the rate, R(Q), of the vector quantizer as
| .
R(Q) £ LI(X;X). (5.10)

Note that the rate, as defined by Equation 5.10, depends on the pdf of the input
random vector, X. However, we can derive a pdf-independent bound on the rate.
Since the vector quantizer is a deterministic function, we know that H(X|X) = 0,

so we have

= _HX)- —HX|X) (5.11)

1 ~
= SH(X).

Using the bound from Equation 3.2, we then have

R(Q) = %H(X) < %1% K, (5.12)

where K is the size of the codebook.
We can quantify the performance of the vector quantizer given input random

vector X by examining the average distortion (2], D(Q), of the quantizer, defined as

D(Q) 2 B [aX,%)] = [ fx(xd(x, Q) ix, (513

where fx(x) is the pdf of random vector X. An optimal vector quantizer for a
given input random vector, X, and a fixed codebook size, K, is one that produces
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the smallest average distortion [2]. There are two well known conditions that are
necessarily satisfied by an optimal vector quantizer: the nearest-neighbor and the
centroid conditions [2].

The nearest-neighbor condition states that the best encoding of a given vector
is produced by the codeword that is closest to it, where “closest” is in terms of the
distortion measure [2]. Mathematically, the nearest-neighbor condition implies that

an optimal vector quantizer must satisfy
x=Q(x)=c; onlyif d(x,¢;) <d(x,c;), Vj. (5.14)

Thus, given a codebook, the nearest-neighbor condition determines the partition re-

gions of an optimal quantizer, which satisfy
R; C {x e RY :d(x,¢;) < d(x,¢)), Vj}, (5.15)

where the subset is used in this expression so that a point that is equidistant to
two or more codewords may be assigned arbitrarily to any of the corresponding re-
gions without affecting the average distortion. Nearest-neighbor vector quantizers are
commonly used in practice. Not only do these vector quantizers satisfy one of the
necessary optimality conditions, but they also result in simple encoding algorithms
that do not require storing the geometries of all the partition regions of the quantizer
2].

The centroid condition states that, given a set of partition regions, the codeword
associated with each region should be assigned so as to minimize the distortion be-
tween that codeword and all the vectors assigned to the region [2]. Mathematically,

this generalized centroid condition implies
c;=argmin F [d(X,y) | X € R]. (5.16)
y
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Since we are assuming that the distortion measure is the squared error, Equation 5.16

can be shown to be

which corresponds to the familiar definition of the centroid used in mechanics [2].

It can be shown that the nearest-neighbor condition results in an optimal vector
quantizer having convex, polytopal partition regions [2]. Additionally, the centroid
condition guarantees that the reproduction vectors lie within their respective partition
regions [2]. These observations result in the fact that an optimal vector quantizer is
not only regular, but also polytopal [2]. Consequently, the class of polytopal vector
quantizers performs at least as well as the class of more general, nonregular vector
quantizers, a result that was alluded to in the previous section.

Additionally, one should observe that a block source code, as defined in Sec-
tion 4.4.1, is a vector quantizer satisfying the nearest-neighbor condition. Conse-
quently, a block source code is a special case of a vector quantizer, namely a nearest-
neighbor vector quantizer. Thus, the positive and negative source-coding theorems of
Sections 4.4.1 and 4.4.2 apply to an optimal vector quantizer used to code a stationary
random process; this topic will be investigated further in Section 5.4.

Now that we have discussed conditions for optimality of a vector quantizer, we turn
to the performance, in terms of rate and distortion, that is achievable by an optimal
vector quantizer meeting these conditions. We have defined the average distortion of
a vector quantizer in Equation 5.13. It would be of interest to express the minimum
average distortion, D(Q*), achievable for an optimal vector quantizer, Q*, in terms of
the input probability density, fx(x), assuming a fixed number of codewords, K, and
a fixed vector dimension, N. No expression of this kind is known in this general case;
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however, if we make the assumption of a high-resolution quantizer, i.e., a quantizer
with K very large, then approximate bounding expressions on the minimum average

distortion can be derived. For example, it has been shown that a lower bound is

where I['(-) is the gamma function [2, 28, 29].

The lack of a suitable expression of the minimum distortion in the general case
coupled with the usually questionable applicability of the high-resolution assumption
in practice makes it difficult to know whether a given vector quantizer is optimal. This
difficulty will arise again when we consider the design of VQ codebooks in Section 5.3.

We have defined the rate of the vector quantizer in Equation 5.10. As the optimal-
ity conditions place no constraints on the rate, an optimal vector quantizer will have,
in general, a rate less than or equal to % log, K, this upper bound being dictated by
Equation 5.12. We shall see later in Section 5.3 that practical design methods exist
for constructing vector quantizers that have a rate guaranteed to be less than this
upper bound. These vector quantizers will usually be suboptimal in the sense of min-
imum distortion as discussed in this section since a vector quantizer that is optimized
without constraints on its rate will usually achieve a smaller average distortion [2].

Finally, one should note that the nearest-neighbor and centroid conditions are
only necessary conditions, not sufficient conditions. An optimal vector quantizer will
satisfy these conditions; however, in designing a vector quantizer, the fact that these
conditions are satisfied does not guarantee that an optimal quantizer has been found.
Regardless, these necessary conditions do provide a basis for VQ-design methods
that are commonly used in practice. These design methods are the topic of the next
section.
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5.3 Vector-Quantizer System Design

Thus far, we have presented the mathematical basics to VQ. In this section, we
will see how we can use V(Q in real communication systems as well as how we can
design the vector coders for these quantizers. We will first present a communication-
system model using VQ and then, in Sections 5.3.1 through 5.3.2, we will describe
several popular methods of VQ design.

Figure 5.2 shows the incorporation of V(Q into the communication-system model
presented previously in Figure 2.2 of Section 2.3. For the moment, we will assume
that the source, X, is a random vector; we will consider the case of a random-process
source later in Section 5.4.

As seen in Figure 5.2, we divide the VQ system implementing vector quantizer
() into two major components, the encoder and the decoder. Each of these major
components is again divided into two simpler parts. The encoder consists of a vector
coder and a index coder. The vector coder is a mapping, a(-), that outputs a random

variable I, called the indez, given input random vector X; i.e.,
I =a(X). (5.19)
We define «a(-) so that
I=a(X)£2i when Q(X)=c;. (5.20)

The vector coder is usually chosen to be a nearest-neighbor mapping based on the
distortion between X and c; so that the V(Q system implements a nearest-neighbor
vector quantizer. In this case, simply specifying the codebook C suffices to define «f-).

The second component of the encoder, the index coder, is a one-to-one function, ~(-),

95



9¢

N
S X Vector I Index w Index I Vector X Rece
ource Coder Coder Decoder Decoder eceiver

Encoder Decoder

VQ System
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that maps each index to a set of K codewords, w;; i.e.,
v:{1,2,..., K} = {wy,wo, ..., wk}, (5.21)

where each w; is a string of binary digits.
On the decoder side of the system, the index decoder is simply the inverse function,
v~ 1(+), of the index coder. The vector decoder outputs random vector X from input

random variable I. The vector decoder is consequently a one-to-one function, f(-),

defined as
B(I) = c; when I =i, (5.22)

where c; are the codewords in the VQ codebook, C. We see that the concatenation

of the components of the encoder and the decoder implements vector quantizer @,

X =c; = B>y (7(a(X)))) = Q(X). (5.23)

The design of a VQ system consists of two phases. In the first phase, a vector
coder, «f(-), is designed, which determines the codebook, C, and the vector decoder,
B(-). Afterwards, the index coder and index decoder are designed. The performance

of the VQ system is then measured in terms of the average distortion,

DQ)2E [d(x, X)] , (5.24)
and the average code length,
1(Q) £ LE (X)), (525)

where [(w;) is the length in bits of the codeword w; and N is the vector dimension.
In general, both the average distortion and the average code length will depend on
the pdf of the random-vector source, X.
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Let us focus for the moment on the second phase of the VQ-system-design pro-
cedure, assuming we are given a codebook, C, for random vector X. There are two
straightforward ways of designing the index coder, y(-). The first, and most simple,
is to assign to each index the fixed-length code corresponding to its binary represen-
tation. That is, each w; is simply the binary representation of index 7. Consequently,

each codeword has the same length, so the average code length is

[log, K|

L(Q) = s (5.26)

where K is the size of the codebook. This type of index coder is called a fized-length
coder. Note that the average code length for the VQ system using a fixed-length
coder does not depend on the pdf of the source. The second type of index coder is a
variable-length coder which implements any of the entropy-coding methods discussed
in Section 3.3. Use of a variable-length coder will generally result in the VQ system
having a smaller average code length than that of a system using a fixed-length code.
In fact, from Theorem 3.3.1, the average code length for a variable-length system

satisfies

1

FHX) <L < $HX) + (5.27)

when the variable-length coder implements an optimal prefix code. However, from the
definition of the rate of the V(Q system in Equation 5.11, we can rewrite Equation 5.27

as

_ - — 1
R(Q) < L(@) < R(Q) + - (5.28)
Consequently, the average code length of the variable-rate VQ system is close to the

rate of the VQ system, particularly so when the vector dimension N is large. For
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this reason, it is common to think of the average code length as being an operational
rate of the variable-length V(Q system. The operational rate of the VQ system is
guaranteed to be close to the true rate of the system when the vector dimension is
large.

The design of the index coder of a VQ system relies on a predefined vector coder,
the design of this vector coder being the first phase in the overall design of the VQ
system. In general, the design of an optimal vector coder is a very complex problem
since the known optimality conditions are only necessary, not sufficient, conditions. In
fact, the VQ-design problem can be shown to be at least NP-complete [31], meaning
that there exists no algorithm that is sure to produce an optimal vector coder in
polynomial time. Consequently, the algorithms commonly used for VQ design are
guaranteed to produce vector coders that are only locally optimal—“small” changes in
a locally optimal vector coder will not result in a reduction of the average distortion.
However, these locally optimal vector coders are not, in general, globally optimal.
Furthermore, since the average distortion of a globally optimal quantizer is not known
in general (see Section 5.2), we have no way of evaluating how close in distortion a
local optimum is to the global optimum. We can only hope that the local optimum
is a “good” optimum that corresponds to an average distortion that is close minimal.

Below, we survey several algorithms that are locally optimal. Although there exist
versions of some of the algorithms that are designed for known source pdf’s, we present
the version of each algorithm that assumes that the pdf of the source is unknown,
as it is this case that will be of interest later. These algorithms use a set of sample
vectors generated from the source as a “training set.” Each of the algorithms starts

with an initial vector coder that is subsequently modified during several iterations
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through the training set. For each algorithm, a cost function is defined. This cost
function is simply the average distortion for most algorithms, although, in the case of
the entropy-constrained-VQ (ECVQ) algorithm, the cost function considers the rate
as well. For each iteration of each algorithm, a new vector coder with a lower cost over
the training set is produced. Each algorithm converges to a vector coder producing a
locally minimal cost given the training set. The initial codebook used by each design
algorithm is usually chosen so that the initial codewords are reasonably scattered
over the space expected to be covered by the source pdf [2]. Common approaches for
generating the initial codebook are using random values for the codebook components
or randomly choosing the codewords from the training set.

The algorithms we survey below are the generalized Lloyd algorithm, Kohonen
learning, and ECVQ. Although there exist other techniques (see [2]), we focus on
these three algorithms because adaptive-VQ (AVQ) algorithms have been based on
these three nonadaptive-VQ-design methods. We will discuss AV(Q versions of these

algorithms later in Chapter 7.
5.3.1 The Generalized Lloyd Algorithm

The most popular VQ-design algorithm is the generalized Lloyd algorithm which
is a generalization to higher dimensions of Lloyd’s Method I algorithm [32] for scalar
quantizers. The generalized Lloyd algorithm is also commonly known as the LBG
algorithm due to the paper [33] by Linde et al. which popularized the algorithm in VQ-
research circles. The generalized Lloyd algorithm consists of alternatively applying

the nearest-neighbor and centroid conditions to generate a sequence of codebooks
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with decreasing average distortion. Because the generalized Lloyd algorithm yields
a nearest-neighbor vector quantizer, the final codebook produced by the algorithm
completely defines the vector coder a(-) and vector decoder f(-).

The algorithm operates as follows. We begin with an initial codebook of size
K. We partition the training set into K sets of vectors using the nearest-neighbor
rule to associate each training vector with one of the K codewords of the codebook.
This partitioning defines the vector-coder mapping, a(-). We then create a new
codebook with the new codewords being the centroids of each of the K partition
regions of training vectors. This new codebook defines the vector-decoder mapping
B(:). The algorithm repeats these steps and calculates the average distortion for
the new codebook over the entire training set at the end of each iteration. When
the average distortion fails to decrease by a certain threshold amount, it is assumed
that a local minimum in distortion has been reached and the algorithm terminates.
Figure 5.3 gives a detailed description of the flow of the algorithm.

The generalized Lloyd algorithm is a descent algorithm, that is, an algorithm that
“descends” down the surface of a complex cost function in a high-dimensional space
[2]. In the case of the Lloyd algorithm, the cost function is the average distortion and
the descent is accomplished by making small perturbations in the codebook. Since the
average distortion is a complex function possessing, in general, many local minima,
the generalized Lloyd algorithm will descend into a local minimum near the starting
codebook. Consequently, the choice of the initial codebook may have a substantial
effect on the performance of the final codebook produced by the algorithm. Attempts
to rid the generalized Lloyd algorithm of its dependence on the initial codebook

have resulted in several modified algorithms. Examples include stochastic-relaxation
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Given: initial codebook, Cy, for initial vector quantizer, ()¢
training set, T
average distortion of initial quantizer, D(Qo)
stopping threshold, e
iteration counter, m =1

Step 1: For each x € T, define the vector coder as
a(x) = arg miin [d(x,c;)]
where ¢; € C,, during iteration m. This produces K partition sets:
Ri={x:xeT,ax) =i}.

Step 2: Form the new codebook, C,,+1, and consequently the vector decoder, 3(-),
from the centroids of each partition region:

%)

Cm+1 = {Ci 1C; = Z
|R | xER

Step 3: Estimate the average distortion for the new codebook, D(Q11):

D(Qmq1) = |T| Z d(x, B(a

xeT
Step 4: If
D(Qm) - D(Qm-H)

<€

D(Qm)
then stop. Otherwise, set m = m + 1 and go to Step 1.

Figure 5.3: The generalized Lloyd algorithm for VQ design [33]. The distortion
measure is assumed to be the squared error.
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techniques which introduce randomness into the generalized Lloyd algorithm to en-
able it to escape local minima. These stochastic-relaxation VQ-design methods are
surveyed by Gersho and Gray [2].

The generalized Lloyd algorithm evolved from the iterative application of the two
necessary conditions for VQ optimality introduced in Section 5.2. In the next section,
we present a family of algorithms that had origins in the theory of artificial neural
networks. We shall see that these algorithms are also related to the two necessary

optimality conditions.
5.3.2 Kohonen Learning

An important family of VQ-design algorithms is based on an artificial-neural-
network algorithm called Kohonen learning [34]. Although originally developed to
describe the formation of topological feature maps in the brain, the Kohonen-learning
algorithm and its variants have been used extensively for pattern classification and
clustering [35]. Figure 5.4 describes in detail the flow of the Kohonen-learning al-
gorithm. Like the generalized Lloyd algorithm, Kohonen learning produces nearest-
neighbor vector quantizers.

Featured in the Kohonen-learning algorithm are the learning rate and the neigh-
borhood function. The learning rate, ¢;(n), is a function that decays monotonically
from 1 to O as learning progresses. The learning rate ensures that the codewords
are initially very mobile but finally converge to static locations. The neighborhood
function, 7;(4,n), is a function of the index j of the nearest-neighbor codeword of the
current training vector. Usually the neighborhood function is defined to be nonzero
only for codewords close to the nearest-neighbor codeword. The size of this neigh-

borhood gradually reduces as training progresses.
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Given: initial codebook, Cg, for initial vector quantizer, Qg
training set, T
average distortion of initial quantizer, D(Qo)
stopping threshold, €
learning rate, ¢;(n), for each codeword
neighborhood function, 7;(j,n), for each codeword
codeword counter, n =0
iteration counter, m =1

Step 1: For each x € T, do

Step 1la: Determine the index of the closest codeword:

j = argmin [d(x, ¢;)],

Step 1b: Update each codeword according to the learning rule:
¢; = c¢; + ¢i(n)ni(j,n) [x —ci].
Step 1c: Reduce the learning rate and neighborhood function and set n = n + 1.

Step 2: Form the new codebook C,,4+1 from the updated codewords c; which de-
termines the vector coder, a(-), and the vector decoder, 8(-).

Step 3: Estimate the average distortion of the new codebook:

(Qm-i—l |T| Z d X ﬁ

x€T
Step 4: If
D(Qm) - D(Qm-H)

<€

D(Qm)
then stop. Otherwise, set m = m + 1 and go to Step 1.

Figure 5.4: The Kohonen-learning algorithm for VQ design [34]
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There are several variants of the Kohonen-learning algorithm in widespread use.
Perhaps the most popular is competitive learning [36, 34]. In the competitive-learning
algorithm, the neighborhood function is defined to be 1 for the nearest-neighbor code-
word and 0 for all others. It has been shown that the competitive-learning algorithm
is derivable from the two necessary conditions upon which the generalized Lloyd al-
gorithm is based [37]. Consequently, it is not surprising that it has been observed
that competitive learning and its variants have performance comparable to that of the
generalized Lloyd algorithm [37, 38, 39]. Competitive learning is less computationally
expensive than Kohonen learning as it lacks the extensive calculations that must be
performed for neighboring codewords. However, the Kohonen-learning algorithm is
able to avoid “bad” local minima due to its neighborhood function. Consequently,
there have been several attempts to modify competitive learning to reduce the like-
lihood of convergence to bad local minima. These efforts have resulted in a family
of competitive-learning algorithms featuring so-called conscience mechanisms [40, 41]
that reduce the chances that the algorithm excessively modifies one codeword to the
neglect of the others. Frequency-sensitive competitive learning [35] and competitive
selective learning [37] are examples of such an approach.

Both the generalized Lloyd algorithm and Kohonen learning use the two necessary
conditions introduced in Section 5.2 as a basis for VQ-codebook generation. As these
conditions concern the minimization of the average distortion regardless of rate, the
rate of the quantizer generated by these algorithms may be as high as the maximum
value %log2 K. In the next section, we present an algorithm that is designed to

constrain the rate to be below this maximum.
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5.3.3 Entropy-Constrained Vector Quantization

Entropy-constrained VQ (ECVQ) was developed by Chou et al. [30] as a modifi-
cation to the generalized Lloyd algorithm. The ECVQ algorithm produces a vector
coder that minimizes the average distortion subject to a constraint on the entropy
of the quantizer output, H (X) Whereas the generalized Lloyd algorithm left the
design of the index coder, (-), to be completed separately after the codebook was
generated, the ECV(Q algorithm works under the assumption that the index coder
will be variable length. The estimated lengths of the codewords of this variable-length
coder are used in a cost function that weighs the average distortion against the rate.
The minimization of this cost function results in the ECVQ algorithm being similar
to the generalized Lloyd algorithm. However, instead of the two-step iteration of
the generalized Lloyd algorithm, each iteration of the ECVQ algorithm consists of
three steps: the application of a modified nearest-neighbor rule, the updating of the
estimated lengths of the variable-length codewords, and finally the updating of the
codebook with the centroid rule.

More precisely, the ECV(Q algorithm is based on a cost function of the form

J(Q) = D(Q) + AL(Q), (5.29)

where ) is a predefined parameter and D(Q) and L(Q) are defined in Equations 5.24
and 5.25, respectively. The ECV(Q algorithm consists of minimizing J(Q) by opti-
mizing one of the functions, a(-), 3(-), or (), while considering the other two fixed.

A detailed description of the algorithm is given in Figure 5.5.
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Given: initial codebook, Cy, for initial vector quantizer, (g
initial codeword lengths, I((%))
training set, T
average distortion of initial quantizer, D(Qq)
stopping threshold, ¢
rate-distortion parameter A
iteration counter, m =1

Step 1: For each x € T, define the vector coder as
a(x) = arg miin [d(x,c;) + Al(7(9))]
where c; € C,, during iteration m. This produces K partition sets:
Ri={x:x€eT,ax) =i}.

Step 2: Form Cp,4+1 and the new vector decoder, 5(-):

. IRl
l lo
Step 4: Estimate the average distortion and average code length for the new code-
book:
m d 7 L m
D(Qm+1) |7-| E (@m+1) N|T| E

x€T
Step 5: Calculate new cost function:
J(@m+1) = D(Q@m+41) + AL(Qm1)-
Step 6: If
J(@m) = J(Qm+1)

<e€

J(@Qm)
then stop. Otherwise, set m = m + 1 and go to Step 1.

Figure 5.5: The ECVQ algorithm for VQ design [30]. The distortion is assumed to
be the squared error.
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The ECVQ algorithm uses an estimate of the lengths of the codewords of the

variable-length index coder in the form of

1(7(@)) = —log, p(1), (5.30)

where p(i) is an estimate of the probability that random vector X belongs to the 4"
partition. The algorithm factors these length estimates into a vector coder embodying
a modified nearest-neighbor rule which implements a cost function based on both
rate and distortion. The modified nearest-neighbor rule assigns source vectors to
codewords so to minimize the combined rate-distortion cost of the assignment. The
resulting entropy of the output of the quantizer, H (5(), and consequently the rate
of the quantizer, are affected. Additionally, one should note that, contrary to the
other V(QQ-design algorithms seen thus far, the quantizer resulting from the ECVQ
algorithm is not a nearest-neighbor vector quantizer, since the vector coder does not
implement a distortion-based nearest-neighbor mapping.

The parameter A of the algorithm controls the relative weight that the rate of
the vector quantizer plays in the cost function and thus dictates how far below the
maximum value of + log, K that the rate is constrained to be. Small values of A
emphasize minimizing the distortion over the rate and result in codebooks with rela-
tively high entropy. In fact, if A = 0, the ECV(Q algorithm reduces to the generalized
Lloyd algorithm which minimizes distortion with unconstrained rate. Larger values
of X increase the weighting of the rate in the cost which tends to reduce the rate of
the quantizer at the expense of larger average distortion. At A\ = oo, the resulting
quantizer has R(Q) = 0.

In order to constrain the rate of the VQ system to be less than some value R*,

0 < R* < & log, K, we must find a value of A yielding a vector coder with R(Q) < R*,
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which is generally done by trial and error. Once the vector coder is designed meeting
the desired rate constraint, R(Q) < R*, the index coder, (-), can be designed using
any of the entropy-coding techniques discussed in Section 3.3. The resulting average
code length, or operational rate, of the final VQ system will satisfy Equation 5.28.

During the ECV(Q training procedure, some codewords usually become unpopu-
lated; that is, during Step 1 of Figure 5.5, partition sets R; become empty for some
i [30]. The ECVQ algorithm deletes the codewords corresponding to these empty
partition sets from the codebook resulting in a final codebook that is, in general,
smaller than the initial codebook. Methods commonly used to repopulate empty
partitions in the generalized Lloyd algorithm are generally not applicable to ECVQ
as, although repopulating empty partitions may successfully reduce distortion, this
action may also increase the entropy of the quantizer [30].

Because it does not produce a nearest-neighbor vector quantizer, ECV(Q is theo-
retically suboptimal. Usually the resulting quantizer has a higher average distortion
than would a quantizer designed by the generalized Lloyd algorithm for the same
initial codebook size [30]. However, it has been observed that ECVQ achieves bet-
ter distortion performance when compared at equal rates [30]. For example, it has
been observed that a codebook created by the generalized Lloyd algorithm followed
by a separately designed variable-length entropy coder has higher distortion than an
ECVQ quantizer operating at the same rate [30].

Thus far, we have presented three popular algorithms for VQ design: ECVQ,
Kohonen learning, and the generalized Lloyd algorithm. We have presented these

algorithms in a context of designing a vector quantizer for a random-vector source
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using training samples from this source. In the next section, we will consider using

the resulting VQ systems for coding random processes rather than random vectors.

5.4 Nonadaptive Vector Quantization of a Random Process

Up to this point, the discussion of this chapter has been concerned with VQ
systems that operate on a single random vector. In this section, we extend the
previously presented ideas to the case in which the source is a random process. In
this section, we assume that the VQ-design process takes place offline, that is, before
coding of the random process begins. As the VQ-design algorithms described in
the previous section are very computationally intensive, the time required for offline
training may be very long. However, the expense of training is incurred only once,
because, after the quantizer is designed, it is not changed. A VQ system operating in
this manner is said to be nonadaptive. Such nonadaptive VQ systems can be optimal
in a rate-distortion sense when used to code certain random processes, as we will see
below.

More precisely, suppose X, is a stationary, ergodic random process that we par-
tition into successive blocks of N values each. Let random vector X be the first
block of values. As we have observed previously, an optimal vector quantizer, QQ*, for
random vector X will be a nearest-neighbor vector quantizer. Consequently, Q* is a
block source code as described in Section 4.4. Therefore, by the positive and negative
source-coding theorems, Theorems 4.4.1 and 4.4.2, for a given ¢ > 0 and a given
average distortion, D > 0, the optimal vector quantizer will have average distortion,

defined by Equation 5.13, satisfying

D(Q*) < D, (5.31)



and rate, defined by Equation 5.10, satisfying
R(D) < R(Q") < R(D) +e, (5.32)

where R(D) is the rate-distortion function for the random process, if the vector
dimension N is chosen large enough. An equivalent set of expressions involving the
distortion-rate function is also possible via Theorems 4.4.3 and 4.4.4. For a stationary
source, these expressions hold for every successive block of N values from the process,
where each block is coded with the same vector quantizer, Q*. Following a discussion
similar to that of Section 4.4.1, the time-average per-letter distortion of the coding of

the random process converges to the average distortion of the vector quantizer, i.e.,

M
N 1 ~ _
P, ) £ lim 3™ (X, %) = DI@) < D, (5.33)
=1

and the entropy rate of the output process satisfies
R(D) < H(X,) < R(D) +e. (5.34)

Thus, coding performance arbitrarily close to the rate-distortion function of a
stationary, ergodic random process is achievable by an optimal vector quantizer of
sufficiently high dimension. This theoretical optimal efficiency has motivated the use
of VQ in many practical coding applications. However, the actual practical perfor-
mance of V(@ systems may be quite suboptimal due to several factors that complicate
the application of theoretical results to real systems. These complications result in the
best performance obtained to date by current VQ systems often being quite far from
that which theory predicts is achievable. The first of these problems lies in the fact
that the VQ-design algorithms available for practical systems, those algorithms de-
scribed in Section 5.3, result in locally, rather than globally, optimal quantizers. The
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second is that it is difficult to create a training set of a practical size that meaningfully
captures the statistical behavior of the process for all time. The third complication is
that practical systems face a limited range of available vector dimensions that bound
the performance of the vector quantizer away from the rate-distortion function. The
final problem in the application of theoretical results to practical VQ systems is that
the source process can rarely be assumed to be stationary in reality. These problems
have prompted a search for more general VQQ architectures capable of better practical
performance than nonadaptive VQ. A possible solution to these problems lies in the
class of algorithms known as adaptive VQ (AVQ). Contrary to the nonadaptive-VQ-
system model discussed thus far, AVQ algorithms allow the codebook to be modified
while the coding of the source process progresses. This class of algorithms will be the

subject of the remainder of this text, beginning with the next chapter.
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CHAPTER 6

ADAPTIVE VECTOR QUANTIZATION

In Chapter 5, we presented the theory of nonadaptive VQ and showed that a
nonadaptive vector quantizer can achieve rate-distortion performance arbitrarily close
to the rate-distortion curve of a stationary, ergodic random process, provided that
the vector dimension of the quantizer is sufficiently large. In this chapter, we turn
to a more general method of coding, adaptive vector quantization (AVQ). In AVQ,
the quantizer is no longer fixed but varies in time as coding progresses. The adaptive
nature of AVQ algorithms offers the potential for significant performance improvement
over nonadaptive VQ, most importantly in the case of nonstationary sources.

Central to the discussion of rate-distortion theory in Chapter 4 was the concept
of an optimal block source code. We saw in Chapter 5 that VQ could be viewed as
a practical implementation of block source coding and the VQ-design algorithms of
Section 5.3 as attempts to find the optimal block source code for a given stationary
source. AV(Q algorithms, on the other hand, are generally intended for nonstationary
sources, and, as we saw in Section 4.5, the rate-distortion results for nonstation-
ary processes are quite few. Consequently, even though we are able to develop a
mathematical definition of AVQ (Section 6.1) that parallels that of nonadaptive VQ
(Section 5.1), we are unable to establish corresponding optimal coding properties for
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the AVQ of nonstationary sources. There have been, however, investigations that
establish rate-distortion optimality for AVQ of certain stationary sources; in partic-
ular, Zhang and Wei [42] describe an AV(Q algorithm and show its rate-distortion
optimality for all iid sources with a finite alphabet. However, since our main interest
is the development of practical algorithms for the coding of nonstationary rather than
stationary sources, we do not consider the results of Zhang and Wei further here, nor
do we attempt to derive similar results for the AV(QQ algorithms under consideration
later.

In this chapter, we begin our discussion of AVQ by presenting, in Section 6.1,
a mathematical definition of AVQ similar to the one developed for nonadaptive VQ
earlier in Section 5.1. Then, in Section 6.2, we limit the generality of our AVQ
mathematical definition, producing a model for real AVQ communication systems.
We then detail the various components of our AV(Q) communication-system model
and finally define operational measures to gauge the performance of AV(Q algorithms
implemented under this model. The AV(Q communication-system model developed
in this chapter will allow, in Chapter 7, the classification of AVQ algorithms from
previous literature, as well as an evaluation of their performance in Chapter 9.

6.1 A Mathematical Definition of Adaptive Vector Quanti-
zation

In this section, we define mathematically the concept of an adaptive vector quan-
tizer. The mathematical definition presented here will be our most general description
of AV(Q; this generality will be restricted somewhat in Section 6.2 when we derive our
AVQ communication-system model to more realistically describe the operation of
practical AVQ algorithms.
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Assume that we have initially a random process, X,,. We form random-vector
process, X;, by repetitively grouping N values from X, to form a sequence of N-
dimensional vectors. Then, we define adaptive vector quantizer, @)y, as follows. Let
C* denote a large universal codebook, C* C RV, that is fixed for all time ¢. We define

a sequence of local codebooks, C;, such that
c.ccr (6.1)

at each time ¢t. We restrict each set C; to be finite. Adaptive vector quantizer @ is a
time-variant mapping from N-dimensional Euclidean space to the local codebook for

time t; i.e.,

Q::RY =, (6.2)
The output of the adaptive vector quantizer is another random-vector process,

X, = Qu(Xy). (6.3)

The quantized random-vector process, X;, is then unblocked to produce the final,
quantized random process, X,.

The above mathematical definition of AVQ is sufficiently general to encompass the
majority of algorithms reported in prior literature purporting to be “adaptive vector
quantization,” although there are some exceptions. In our definition, we consider
only those algorithms which vary the local-codebook composition as AVQ algorithms.
However, other VQ algorithms exist that can be considered, in one way or another, to
be adaptive. For example, one algorithm in particular is variable-dimension VQ [2],
which features a quantizer that adjusts the vector dimension, NV, of the blocking of the

input random process and then uses a separate codebook for each vector dimension.
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Although such algorithms can be useful in practice, the design procedures associated
with techniques such as variable-dimension VQ generally treat these algorithms as
collections of nonadaptive source coders rather than one adaptive algorithm. For this
reason, we will not consider these types of algorithms further here.

We make some further comments on our AVQ mathematical definition in the
following sections. Then in Section 6.2, we discuss how the mathematical definition

forms a basis for the design of practical communication systems using AVQ.
6.1.1 The Universal Codebook

The universal codebook, C*, is one of the main features of the previously presented
mathematical definition of AVQ. The intuition behind the use of this universal code-
book is that we assume that this large codebook is capable of efficiently coding the
random-vector process X;. As such, the AVQ universal codebook is reminiscent of
universal source coding [43, 22]. The theory of universal source coding is rather com-
plex, but can be summarized as follows. Given a class of sources, such as the class of
stationary, ergodic sources, a source coder is said to be universal if it can optimally
code each of the sources of the class without knowing beforehand which source is being
coded [43, 22]. Some approaches to universal source coding use universal codebooks;
for example, Neuhoff et al. [43] describe a large universal codebook that contains all
the optimal block source codes for each of the individual sources of the class. Lossy
universal source-coding algorithms have been mainly of theoretical interest [42] and
often rely on infinite block lengths and random-coding arguments to prove optimality
(e.g., the algorithm of [42]). However, the theory of universal source coding is an im-

portant inspiration behind the mathematical definition of AVQ previously presented.

76



Indeed, if an AVQ algorithm can be proven to achieve rate-distortion optimality for
a particular class of sources, it can be considered to be a universal algorithm for that
class. Such universal results have been shown for AVQ algorithms (e.g., [42]).

The idea of a universal codebook, also known as a “super-codebook” occasionally,
has appeared previously in AVQ literature (e.g., [44, 45, 46]). In these instances, the
universal codebook was restricted to be a finite set of vectors. We, however, place no
such restriction on the universal codebook, allowing it to be finite, countably infinite,
or uncountably infinite. By including such infinite-size codebooks in our mathemati-
cal definition, we allow for the most general interpretation of the universal codebook,
that is, simply, a set from which we draw codewords to form a local codebook. Such
generality allows our mathematical definition to include AV(Q algorithms from pre-
vious literature that do not explicitly specify a universal codebook. Oftentimes, the
universal codebook for these algorithms will be the N-dimensional source alphabet,
XN, or even the entire Euclidean space ®". Nonetheless, these will be considered to
be valid universal codebooks under our definition of AVQ.

The universal codebook is the source from which the adaptive vector quantizer
draws the sequence of local codebooks. We elaborate on the properties of these local

codebooks in the next section.
6.1.2 The Local Codebook

Contrary to the universal codebook, which may possibly be infinite, we restrict
each local codebook, C;, to be a finite set. The intuition behind the use of local code-
books is as follows. If we used the universal codebook as the codebook for a fixed,

nonadaptive vector quantizer, we would achieve good distortion performance (since
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the universal codebook ideally is capable of universal source coding), however, the
rate would be prohibitively high for practical implementation (because the universal
codebook is large, if not infinite). The local codebook is a mechanism for restricting
the rate of the coding of the source by allowing only a portion of the universal code-
book to be used at a given time. In order to have a finite quantizer rate at each time
t, and consequently a finite time-average rate, we restrict each local codebook to be

a finite set. We let random process K; be the size of the local codebook; i.e.,

Ky = [Cy. (6.4)

It is of convenience, at this time, to define an additional random process for
describing the content of each local codebook. First, we define a mapping, s;, that

describes the composition of local codebook, C;, at time ¢ as

si:C* = {0,1} (6.5)

such that

C:={c:ceC s(c)=1}. (6.6)

If C* is finite or countably infinite, it is possible to order each codeword c; € C* with

a unique integer index, 1 = 1,2,3,... We then define random variable S; as

Sy = s4(cy1) o s4(ce) 0 s4(cz) 0+, (6.7)

where the operator o denotes the concatenation of binary digits. We can consider this
sequence of concatenated binary digits to be a binary fraction if we locate the radix
point to the left of s;(c1). Consequently, S; can be considered to be a random variable
taking on values between 0 and 1 for the possible local-codebook compositions at time
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t. S; will be a discrete random variable for C* finite, and a continuous random variable
for C* countably infinite. Thus, random process S; is called the codebook-selection
process as it completely describes the composition of each of the local codebooks
at time t. In Appendix A, we show, using some ideas from measure theory, how
this same codebook-selection process may be defined for the case of an uncountably
infinite universal codebook. Consequently, we can assume the existence of .S; for all
possible universal codebooks.

We now define two more quantities related to the local codebook. The learning

set at time ¢ is defined as
Et = Ct - Ct—l; (68)

that is, the learning set is the set of codewords that are added to the local codebook

when going from time t — 1 to time ¢. Similarly, we define the forgetting set as
Fi=Ci1—Cy, (6.9)

that is, the set of codewords removed from the local codebook.

The learning and forgetting sets are crucial to the performance of an adaptive
vector quantizer as they control which codewords the quantizer is allowed to use at
a given time. We complete our mathematical definition of AVQ in the next section
by giving the definitions of rate and distortion necessary to a discussion of such
performance.

6.1.3 Performance Measures of an Adaptive Vector Quan-
tizer

In this section, we define two quantities that measure the performance of an
adaptive vector quantizer. We define the average distortion, D(Q;), of adaptive vector
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quantizer @); as

D(Q,) = Th_?(}o E

% > d(x, Xt)] : (6.10)

t=1
when the expression exists. We will assume that d(X;, Xt) is a single-letter distortion
measure unless otherwise stated so that the average distortion is units of distortion
per vector component.

Similarly, we define the rate, R(Q;), of adaptive vector quantizer Q; as

_ 1 ~ ~ ~
R(Q,) = lim W1(){1,X2,X3,...;)(1,)(2,)<;3,...), (6.11)

T—00

when the limit exists.

The expressions of Equations 6.10 and 6.11 have limited utility because their ex-
istence is not guaranteed. It is not clear that these expressions will exist even if input
random-vector process X; is stationary and ergodic, because the stationarity and er-
godicity of X, will depend on the sequence of local codebooks, C;. Consequently, it is
difficult to make general statements about the rate-distortion performance of adap-
tive vector quantizers. However, if we restrict the generality of our mathematical
definition of AVQ, we can define operational rate and distortion measures that form
approximations to the true rate and distortion described here while allowing us to em-
pirically evaluate the rate and distortion of AVQ algorithms. In the next section, we
present a model for AVQ communication systems that, although less general than our
mathematical definition of AVQ, nonetheless accurately represents the practical AVQ
algorithms that have been reported in previous literature. Then, in Section 6.2.4, we
define operational rate and distortion measures for this AV(Q communication-system
model that will permit the empirical evaluation of the rate-distortion performance of
AVQ algorithms.
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6.2 A Model of Communication Systems Using Adaptive
Vector Quantization

In this section, we present a model of a communication system using AVQ. This
communication system will be similar to the one developed for nonadaptive VQ in
Section 5.3 with the addition of components to allow the quantizer to vary in time.
The mathematical definition of AV(Q presented in Section 6.1 forms the basis of the
communication-system model which, in turn, represents a practical, albeit less gen-
eral, implementation of this mathematical definition.

Figure 6.1 depicts our AV(Q communication-system model. We see from this figure
that the AVQ communication-system model consists of the nonadaptive-VQ model
that was presented in Figure 5.2 with additional components that make the system
adaptive. We discuss each of the components of this communication-system model
below.

The input to the AVQ communication system is continuous random process X,,.
The first component of the system is the vector blocker which produces the random-
vector process X; by blocking together NV consecutive values of X, into a sequence of
N-dimensional vectors. The random-vector process X; is then fed into the encoder.
The encoder of the AVQ system consists of the VQ encoder, the codebook selector,
the codebook coder, and a codebook decoder.

The V@ encoder of the AVQ encoder is a time-varying version of the nonadaptive
VQ encoder presented in Section 5.3. The VQ encoder of the AVQ system consists of
two components, the vector coder and the index coder. The wvector coder is a time-

varying mapping, oy(-), that outputs a discrete random process I, called the index
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process, given continuous random-vector process X; as input; i.e.,
I = oy (Xy). (6.12)
We define mapping ay(-) so that
I = 0y(X;) 24 when QX)) =c;, (6.13)

where ¢; € G, and 1 < i < K;. That is, the vector coder maps input vectors to
codewords of the current approximation, ét, to the local codebook. For most AVQ
algorithms, the vector coder is simply a nearest-neighbor mapping with respect to
some distortion measure, although a few algorithms, such as our new AVQ algorithm
presented in Chapter 8, use a more sophisticated mapping based on both rate and
distortion. We note that the vector coder actually uses an approximation, (ft, to
the local codebook instead of the local codebook itself so that the decoder and the
encoder function identically. This point will be elaborated below.

The indezx coder of the VQ) encoder is a time-varying, one-to-one function, y;(-),

that maps each index to a set of K; codewords, w;; i.e.,
v {1,2,..., K} = {wi,wa, ..., wk,}, (6.14)

where each w; is a string of binary digits, and K, = |G| = |C]. The output of
the index coder, discrete random process W;, is sent to the AVQ system decoder.
Although more general index coders are possible, i.e, those that map more than one
index symbol to a codeword, the index coder as defined here, which maps one index
symbol to one codeword, is nearly always the method of choice for practical AVQ

algorithms. We investigate this topic further in Section 6.2.1.
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The AVQ-system encoder contains several components that give the AVQ system
its adaptive nature, namely, the codebook selector, the codebook coder, and the code-
book decoder. The codebook selector monitors the input random-vector process and
creates a sequence of local codebooks. The codebook coder transmits a description
of this sequence of local codebooks to the decoder. The codebook-sequence infor-
mation is conveyed to the decoder in the form of random process S,, which is an

approximation to codebook-selection process S;. In general,
S, #S,. (6.15)

Since both the codebook selector and the codebook coder are crucial to the perfor-
mance of the AVQ communication system, we discuss them in greater detail below in
Sections 6.2.2 and 6.2.3.

The AVQ-system decoder consists of the V(Q decoder and a codebook decoder. The
codebook decoder reconstructs a sequence of approximate local codebooks, (ft, from the
random process S, which is the codebook-selection information transmitted to the
decoder. The AVQ-system encoder also has a copy of the codebook decoder. Since
the codebook-selection information conveyed to the decoder, S, is not necessarily the
same as the codebook-selection process, the sequence of local codebooks produced by
the codebook decoder will, in general, differ from the true sequence of local codebooks,
C;. However, both the encoder and the decoder use the same approximate local
codebook during coding. We discuss the implications of the use of an approximate
local codebook sequence along with the design and operation of the codebook coder
below in Section 6.2.3.

The V@ decoder is similar to the decoder of the nonadaptive-V(Q system of Sec-
tion 5.3, except that it is time-varying. The AVQ-system V(Q decoder consists of the
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index decoder and the vector decoder. The indezr decoder is simply the inverse func-
tion, ;! (), of the index coder of the AVQ-system VQ encoder. The vector decoder
receives the index process output by the index decoder and outputs the corresponding
sequence of codewords from the local codebook. The vector decoder is consequently
a time-varying one-to-one function, ;, from the set of indices to the local codebook

of the decoder; i.e.,
Bi:{1,2,..., K} = C,. (6.16)
The operation of the AV() system is the concatenation of all the operations,

X, = Bi(vy M (r(a(Xe)))) = Qu(Xy), (6.17)

which implements the adaptive vector quantizer, );. Finally, the vector unblocker of
the AVQ system produces the random process X, from the random-vector process
X, by unblocking the N-dimensional vectors.

The vector coder and vector decoder of the AVQ system are the same as the
corresponding components of the nonadaptive-VQ system described thoroughly before
(Section 5.3), with the exception that the codebook used for the coding is time-
varying. However, the other components of the AVQ system, namely the index coder,
the codebook selector, and the codebook decoder warrant further discussion. We
elaborate on the operation and typical implementation of each of these components

below in Sections 6.2.1 through 6.2.3.
6.2.1 The Index Coder

The task of the index coder in the AVQ-system encoder is to generate an efficient,

lossless coding of the index process, I;. Assuming for the moment that X; and C, are
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such that index process I; is stationary, then, ideally, the job of the index coder is
to produce a coding whose average length approaches the entropy rate of the index
process. As we saw in Section 3.3, such a coding is theoretically possible if the index
coder uses a prefix code with infinite blocking of symbols from the index process. In
practice, such infinite blocking is not possible, so one usually settles for a prefix code
that approaches the first-order entropy of the index process.

Practical AVQ algorithms usually feature an index coder that outputs one code-
word for each symbol of the index process. Consequently, in Section 6.2, we defined

the index coder as function (),
W, = %(It) (6'18)

featuring single-symbol blocking of the index process. Assuming single-symbol block-

ing, we define the average code length of the index coder as

(Wt = %EEOWZZ ’}/t (07 Xt (619)

when the limit exists. Note that [(w;) is the length in bits of codeword w; and that
the average code length has units of bits per vector component.

It is common in AV(Q algorithms that the index coder is further simplified so that
function ~;(-) is not time-varying; i.e., the index coder uses a static mapping, 7(-).
In the case of a static-mapped index coder, one assumes that the size of the local

codebook is constant; i.e.,

for all time ¢. In general, there are two types of static mappings. The first, and
most simple, is the fized-length index coder. For a fixed-length index coder, one
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assigns to each index the fixed-length code corresponding to its binary representation.

Consequently the average code length for a fixed-length index coder is

LW, = % (6.21)

The other type of static-mapped index coder is a variable-length index coder. In
a variable-length index coder, some form of entropy coding, such as Huffman coding
[10], is used so that the average code length of the index coder approaches the first-
order entropy of the index process. Usually it is necessary that, after the index coder
is designed for a particular source, a code table be transmitted to the decoder.

Entropy coding is also used in dynamic index coders, those index coders which
are not static-mapped. With dynamic index coders, it is common to make use of
multi-symbol blocking. Arithmetic coding [12] and Lempel-Ziv coding [13, 14] are
two examples of entropy-coding techniques useful in the design of such index coders.
Dynamic index coders are sometimes preferred in the index-coder design as they
typically do not rely on the transmission of a predesigned code table to the decoder.
However, one should note that, even though variable-length (both static and dynamic)
index coders are, in general, capable of more efficient coding performance than fixed-
length coders, fixed-length coders are sometimes used in practical implementations
because they do not require the complicated buffer schemes (e.g., [47]) often needed
to match variable-length coders to fixed-rate channels.

In this section, we have surveyed the different possible types of index coders.
The design of these index coders, particularly those involving entropy coding, can be
quite complicated and is beyond the scope of this discussion. Indeed, most of the
presentations of AV(Q algorithms in previous literature either ignore the problem of
the design of the index coder, assume a simple, fixed-length index coder, or assume
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the existence of a perfect dynamic index coder yielding an average code length equal
to the first-order entropy of the index process. Since the above-mentioned dynamic
entropy-coding techniques do theoretically achieve the first-order entropy, we will also
take the latter approach to the index-coder problem by assuming, from this point on,
the availability of such a perfect index coder. The interested reader is referred to the
book [11] by Williams for more details on the implementation of suitable dynamic

index coders.

6.2.2 The Codebook Selector

The task of the codebook selector is to determine, at each time ¢, the learning
and forgetting sets, £; and F;, as defined in Equations 6.8 and 6.9. The codebook
selector can be decomposed, as shown in Figure 6.2, into two components, the learning
process and the forgetting process. The learning process creates the learning set and
the forgetting process creates the forgetting set. The local codebook is then formed

as

Ct = Ct—l U ,Ct - ft. (622)

The learning process of the codebook selector usually implements a modified
version of one the nonadaptive-VQ training algorithms described in Sections 5.3.1
through 5.3.3. As the operation of the learning process is crucial to the performance
of the AVQ system, the method of implementation of this process provides the best
means of differentiating between the various reported AVQ algorithms. Consequently,
the learning process will provide a basis for the development of a taxonomy of prior

AVQ algorithms later in Chapter 7.
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implements set-union and set-difference operations.

We identify, however, at this time, two very broad categories of learning processes:
backward adaption and forward adaption [2]. In backward adaption, the adaptive
vector quantizer can determine the learning set from only past quantities. In backward
adaption based on the true past, the quantizer can use past values of the codebook-
selection process and past values of the source process. In backward adaption based
on the coded past, the quantizer can use past values of the codebook-selection process
and past values of the output of the quantizer. In forward adaption, the quantizer
can determine the learning set from quantities from both the past and the future.

More specifically, for backward adaption based on the true past,
St = g(St—I; St_g, e ,Sl, Xt—l; Xt_g, e ,Xl), (623)

where g(-) is some function. Similarly for backward adaption based on the coded

past,

A~

St - g(Stfla Stha .. asla thla thQa .. aXI)- (624)
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For forward adaption,

St = g(St—1, St—2y - -+, 1y Kiry Kire1y e oo s K1y Xy Xio1, X2y« -+ 5 X1),
(6.25)

for some value 7.

Contrary to the learning process, for which nearly every AVQ algorithm has a
different implementation, the forgetting process is usually chosen to be one of two
types: least-recently used (LRU) (see, for example, [48]) or least-frequently used (LFU)
(see, for example, [49]). With LRU forgetting, the codebook selector removes code-
words from the local codebook that have not been used recently in the coding of the
source. It is assumed that, if these codewords have not been used recently, then they
are no longer relevant to the current statistics of the source. With LFU forgetting,
the quantizer removes codewords that have not been used often in the coding of the
source. LFU and LRU are, in general, very similar since one would expect that the
frequency of use of a codeword and the time between successive uses of a codeword
are closely related quantities. We will see examples of AV(Q algorithms for both types
of forgetting processes in Chapter 7.

The common assumption made for most AVQ algorithms is that, even if the
source X; is nonstationary, the statistics of the source do not vary greatly between
consecutive vectors. In fact, it is generally assumed that there exists some [local
stationarity; that is, the statistics of vectors X;, Xii1,... Xy, are approximately
stationary over a local context 7, which is suitably small in comparison to the total
length of the nonstationary process under consideration. If we assume that local
stationarity holds, we can expect that the local codebooks of the adaptive vector
quantizer will not differ greatly between time ¢ and time ¢ — 1. Consequently, both
the learning and forgetting sets will generally contain only a small number of vectors
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each. Indeed, some AVQ algorithms allow only one codeword to be added to the
local codebook at any time (|£;| = |F;| < 1). Other AVQ algorithms allow the local
codebook to change only after an interval of 7 vectors have been processed. We will
see examples of both of these types of algorithms in Chapter 7.

Unless otherwise stated, we will assume that the codebook selector does not allow
the size of the local codebooks to increase or decrease over time. That is, we assume

that
K, =K. (6.26)

This assumption allows a static-mapped index coder to be used, and thus facilitates
the maintaining of an approximately constant number of bits per symbol output from
the index coder, a property often desirable in real AV() implementations. We note,
however, that our general model can accommodate the variation over time of the
size of the local codebooks which can, for example, be used in AV(Q systems that
dynamically add or remove codewords to maintain constant distortion performance.

Because the codebook selector determines which codewords can be used by the
AVQ system at any time, it is very crucial to the performance of the system. Even
though the implementation of the index coder and codebook coder can greatly affect
the performance of the system, they cannot improve upon the fundamental perfor-
mance allowed by the codebook selector. For example, a “good” index coder will
achieve a coding close to the entropy rate of the index process. However, it is the
codebook selector that ultimately determines the magnitude of this entropy rate. The
codebook coder is similarly dependent on the codebook selector. Consequently, if the
codebook selector is performing poorly, then the performance of the entire system
will suffer. 'We therefore consider the codebook selector to be the most important
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component of an AVQ system. In Chapter 7, when we describe various AVQ algo-
rithms that have appeared in previous literature, we will concentrate our discussion

mainly on the codebook selector.
6.2.3 The Codebook Coder

Once the codebook selector has determined the local codebook for time ¢, a de-
scription of its contents must be conveyed to the decoder. Consequently, the task of
the codebook coder is to produce an efficient coding of the codebook-selection pro-
cess, S;, to transmit to the decoder. We represent the information transmitted to
the decoder as random process S;. In general, S, is a sequence of codewords, each of
which being a string of binary digits. We consider only the case that S, implements
a prefix code (see Section 3.3).

To measure the performance of the codebook selector, we introduce the average

codebook code length, defined as

B(3) 2 Jim — 3718, (6.27)

when the limit exists. Note that [(S,) is the length in bits of binary string S; and
that the average codebook code length has units of bits per vector component. The
average codebook code length is often called side information [2] because it can be
considered to be information that is “sent on the side” to the decoder to describe the
adaptive updating of the local codebooks. The operation of the codebook coder and,
consequently, the value of the average codebook code length depend on the universal
codebook.

The most simple case is when the universal codebook is a finite set of K* = |C*|
elements. Assuming that the size of all the local codebooks is the same for all time
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t, there are (II(( ) possible local codebooks that can be drawn from C*. Consequently,

we have

H(S;) < L(S,) < % ’VlogQ (II((H : (6.28)

assuming that the entropy rate of S, exists. Equality on the left side of Equation 6.28
would require a variable-length code for S;, the design of which would be very complex.
Equality on the right side of Equation 6.28 is achieved when a fixed-length code is
used for S;; however, the design of such a fixed-length code is also a very complex
problem, although solutions do exist [45]. To alleviate the complexity of the design
of a fixed-length codebook coder, Zeger et al. [45] suggest two simple techniques that
yield L(S;) > < [log, (II{( )]. The first of these techniques features codewords v; that
each consist of K binary strings, each string being the “address” of one of the K*

codewords in C*. Consequently this scheme has an average codebook code length of

£(5) = 3 llog, K (6.29)

[45]. The second simple technique is to let S, = S, directly. Recall that, in Sec-

tion 6.1.2, we defined S; for a finite universal codebook as
Sy £ s4(c1) o s4(cy) 0+ - 0 84(Ck), (6.30)

where s,(-) was a binary mapping indicating whether or not codeword ¢; € C* was in

C:. The average codebook code length for this codebook coder is then

.. K
L(Sy) = N

(6.31)

[45]. The first of these two simple approaches will have a smaller average codebook

code length when
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K*

K< ——
log, K*’

(6.32)

a choice dependent on the relative sizes of the local codebook and the universal
codebook [46].

Note that, for a finite universal codebook, the codebook-coder schemes mentioned
above transmit the local codebook to the decoder without distortion. That is, refer-
ring to Figure 6.1, C, = C,. However, such lossless transmission of the local codebook
is not possible in the case that the universal codebook is an infinite set. In this case,
it is necessary to introduce some distortion while transmitting the local codebook to
the decoder.

The effect from using a local codebook C, that is different from the “true” local
codebook designed by the codebook selector has been studied by Zeger et al. [45]
and Chou and Effros [50], assuming that the VQ encoder is fixed rate (i.e., W; is
a fixed-length code). Zeger et al. [45] have determined that, assuming a stationary
source and high-resolution-VQ approximations, the total distortion incurred by the
AVQ system can be broken into a distortion associated with the vector coder and local
codebook C; plus a distortion due to the fact that both the encoder and the decoder
use only an approximation, ét, to the true local codebook (the “codebook mismatch”
distortion). Zeger et al. further proceed to analyze two approaches for creating ¢,
from C;. In the first of these two approaches, each codeword component of C; is
quantized with a uniform scalar quantizer. In the second approach, each codeword
of C; is vector quantized to a large codebook (which Zeger et al. call a “universal
codebook” although, technically, it is not the same universal codebook C* which we
use in the codebook selector). For a fixed overall rate of the AVQ system, there is a
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tradeoff on the allocation of the available bits to the vector coder and the codebook
coder, as the total distortion of the AV(Q system depends on the performance of each
component. Chou and Effros [50] developed a formula for the optimal tradeoff, and
Zeger et al. [45] have analyzed the tradeoff for the two types of codebook coders,
concluding that the two approaches perform equally well.

Zeger et al. [45] and Chou and Effros [50] have shown that the design of the code-
book coder in the case of infinite codebooks is a complex problem. Additionally, the
fact that they assume a stationary source and make high-resolution V(Q assumptions
on the vector coder mean that their work is of questionable applicability to practical
AVQ algorithms. However, most designers of AVQ algorithms, when confronted with
an infinite universal codebook, have chosen to use a simple codebook coder, such as
quantization with a uniform scalar quantizer, and ignore the distortion incurred by
using an approximation to the true local codebook. If the resolution of such a scalar
quantizer is sufficiently high so that the distortion due to codebook mismatch is negli-
gible, we can assume that C, = C,. This simplifying assumption allows us to model our
AVQ system more simply than Figure 6.1; our simplified AVQ-communication-system
model is shown in Figure 6.3.

In this simplified AVQ-communication system model, it is assumed that C, = C,.
In theory, such an assumption requires that the average codebook code length, f/(gt),
be very large, or infinite in the case of an infinite universal codebook. As we will see
in Chapter 7, most AVQ algorithms place some practical limit on the amount of side
information sent to the decoder. The most common, and simplest, approach is to
use a codebook coder that implements a uniform, high-resolution scalar quantizer. In

such an approach, each codeword that is added to the local codebook is coded with
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some fixed, finite number of bits per vector component. The resolution of the scalar
quantizer is chosen suitably large so that negligible distortion is introduced between
C, and C,.

In this scalar-quantizer approach, the codebook coder describes the local-codebook
sequence incrementally by coding the contents of the both learning set, £;, and the
forgetting set, F;, rather than by identifying each local codebook as a subset of the
universal codebook. In this case, the learning set is described as a fixed number of
bits per vector component by the scalar quantizer, while the forgetting set is coded
by a set of indices that indicate which old codewords are removed from the local
codebook. Successful implementation of this type of codebook coder relies on the
assumption that both the learning and forgetting sets contain very few vectors. Under
this assumption, the side information required by the codebook coder is usually small
in comparison to the total rate of the AVQ system.

We emphasize that a high-resolution scalar quantizer is only one approach to the
implementation of a codebook coder, and we argue that this approach is sufficient
when the side information accounts for only a small portion of the total rate of an
AVQ system. When the side information becomes a sizeable portion of the total
rate, more effort in the design of the codebook coder is warranted. Specifically,
the resolution of the scalar quantizer should account for the tradeoff, in terms of
rate-distortion performance, that exists between the vector coder and the codebook
coder. However, the mathematics of this tradeoff [45, 50] have been established only
for stationary sources and are generally not invoked in practice. Consequently, in
the experimental comparison of AV(Q) algorithms that follows in Chapter 9, we use a

simple, high-resolution scalar-quantizer codebook coder for each algorithm. Doing so
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facilitates the experiments by permitting the isolation of the codebook selector, which
we argued was the most important component of an AVQ system, from effects due to
the codebook coder. However, we caution that, when side information is a substantial
component of the total rate, more complex design techniques for the codebook coder
may achieve performance more efficient than that of our assumed scalar quantizer.
6.2.4 Operation Performance Measures for AVQ Communi-
cation Systems

In Section 6.1.3, we defined the theoretical rate and distortion of AVQ based on
the mathematical definition presented in Section 6.1. In this section, we define two
operational counterparts that measure the performance of AVQ communication sys-
tems based on the model presented in Section 6.2. These two operational performance
measures will be of utility later in Chapter 9 when we compare the performance of
various AVQ algorithms.

We define the operational average distortion as the time average of the single-letter

distortion, d(X;, X;), between the input and output random-vector processes; i.e,

D(Q) £ lim —Zd X, Xy), (6.33)

T—oo T

when the limit exists. This operational average distortion is also expressible in terms

of the time-average per-letter distortion; i.e.,
_ 1 X
D(Q) = lim — Y p(Xn, X,), (6.34)

when the limit exists.

We define the operational rate of the AVQ communication system as

L(Qy) £ L(Wy) + L(Sy), (6.35)
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where the average code length, L(W,), of the index coder was defined in Equation 6.19,
and the average codebook code length, L(S,), of the codebook coder was defined in
Equation 6.27. Consequently, we see that the operational rate of the AVQ communi-
cation is composed of a rate due to the vector quantizer, i)(Wt), plus a rate due to
the codebook coder, f/(gt). As mentioned before, this second quantity is often called
side information [2] because it can be considered to be information that is “sent on
the side” to the decoder to control the adaptive updating of the local codebooks used
by the vector quantizer.

As a final note, we observe that we have qualified the definitions of both the op-
erational rate and distortion to be defined only when the limits in their definitions
exist. These qualifications are a technical necessity because each definition is an in-
finite time average which may or may not converge. This technicality will pose us
no problem as we will use these definitions solely to calculate empirical estimates of
the rate and distortion obtained by AVQ algorithms. More specifically, in calculating
the rate-distortion results in Chapter 9, we will necessarily have to use finite-length
samples of random processes. Consequently, we use the operational rate and distor-
tion definitions of Equations 6.35 and 6.33 for a fixed length 7" without the limiting
operation. Of course, the operational rate and distortion thusly defined will always
exist over a finite sample length.

This section concludes the discussion of the current chapter on the theoretical
foundations of AVQ. In the next chapter, we review specific AVQ algorithms that
have appeared in prior literature. The theory presented thus far will enable us to
identify theoretically significant differences between the algorithms, upon which an

algorithm taxonomy will be built.
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CHAPTER 7

PREVIOUS ADAPTIVE-VECTOR-QUANTIZATION
ALGORITHMS

In this chapter, we examine some specific implementations of AVQ that have
appeared in previous literature. Typically, AVQ algorithms attempt to apply the
rate-distortion theory developed in Chapter 4 and the theory of VQ presented in
Chapter 5 as heuristic guidelines to the coding of nonstationary sources.

In Section 4.4, we discussed the source coding of stationary random processes. In
that section, we identified two main approaches, constrained-distortion source coding
and constrained-rate source coding. In the first approach, we considered the set of
codes with distortion less than some maximum D, and stated the existence of an
optimal code from this set which yielded the minimum rate. In the second approach,
we considered the opposite case of the set of codes with rate less than some maximum
R, and stated the existence of an optimal code from that set yielding the minimum
distortion. Theoretically, both approaches are equivalent because they both provide
for an optimal code that asymptotically yields performance on the rate-distortion

curve for stationary random processes.
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These two main approaches to source coding have also been applied to the coding
of nonstationary sources, yielding AVQ algorithms of two general types. Constrained-
distortion AVQ algorithms follow the example set by constrained-distortion source
coding. In constrained-distortion AVQ, the codebook selector limits the distortion
produced by the algorithm to some maximum value. The job of the algorithm is
then to find the coding of the source that produces the smallest rate subject to this
distortion constraint. Constrained-rate AVQ algorithms do the opposite, limiting the
rate to be less than or equal to some maximum value and attempting to produce a
coding with the smallest distortion, similar to constrained-rate source coding.

In theory, both the constrained-distortion and constrained-rate AVQ approaches
are capable of optimal coding of stationary sources, assuming an asymptotically infi-
nite codeword dimension. However, in practice, one is often faced with nonstationary
sources as well as a limited vector dimension. Consequently, it has been recognized in
recent literature [46, 51] that, for AVQ algorithms designed to operate in a practical
setting, neither approach is sufficient by itself. The codebook selector of AVQ algo-
rithms should ideally monitor both rate and distortion simultaneously to ensure that
each updating of the local codebook is performed in a manner that is favorable to the
rate-distortion performance of the algorithm. That is, one should not “greedily” lower
distortion without regard to the cost in rate, or vice versa. This observation has led
to the introduction of a third category of AVQ algorithms, namely rate-distortion-
based AVQ algorithms, which have codebook selectors based on the minimization
of rate-distortion cost functions. Additionally, rate-distortion-based AVQ algorithms
usually employ vector coders implementing nearest-neighbor mappings based on these

rate-distortion cost functions.
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In this chapter, we present the details of AVQ algorithms that have appeared in
prior literature. Many of the algorithms have a complicated structure and are usually
presented with several variations. However, the discussion here will generally focus
on the simplest structure available for each algorithm. Additionally, following the dis-
cussion of Section 6.2, any implementation details pertaining to the construction of
the index coder or the codebook coder will usually be omitted. The reasons for these
omissions are several. First, we consider the codebook selector to be the most impor-
tant module of an AV(Q) communication system since the performance of the other
modules is dependent on it. Therefore, we would like to evaluate the performance of
an AVQ algorithm by considering the operation of the codebook selector alone, with-
out any affects from the performance of the other modules. Secondly, most of the
designs for index coders and codebooks coders presented with AVQ algorithms are
ad hoc and are not suited to general data sets. Finally, as discussed in Sections 6.2.1
and 6.2.3, we can assume “ideal” index coders that achieve the first-order entropy of
the index process, and “ideal” codebook coders that transmit the codebook to the
decoder while suffering negligible distortion due to codebook mismatch. By assuming
these “ideal” modules in our algorithms, we provide an equal basis for each AVQ al-
gorithm under consideration, allowing us to isolate the performance of the codebook
selector from that of the other components.

In Sections 7.1 through 7.3 of this chapter, we discuss each of the three categories
of AVQ algorithms in greater detail. Additionally, we examine several algorithms
from each category that have appeared in previous literature. Although there have
been numerous AV(Q algorithms reported, many are quite similar from a theoretical

viewpoint; consequently, we will give only a limited number of algorithms a detailed
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examination. These algorithms will typically have played a historically prominent
role in the AVQ literature, or will have brought interesting ideas to light. For the
algorithms that we discuss in detail, we present a generic algorithm description in this
chapter; the interested reader may find the source code (MATLAB M-file code) for
the algorithms in Appendix B. We conclude this chapter in Section 7.4 with a tax-
onomy of AV(Q algorithms that effectively summarizes the discussion of the chapter.

Afterwards, we proceed to Chapter 8 wherein we present a new AVQ algorithm.

7.1 Constrained-Distortion AVQ Algorithms

The class of constrained-distortion AVQ algorithms includes what may be the first
AVQ algorithm to appear in the literature, the speech coder developed by Paul [52] in
1982. Since then, however, there have been considerably fewer constrained-distortion
AVQ algorithms in the literature than constrained-rate algorithms, perhaps due to a
bias towards the minimization of distortion rather than rate.

The main idea behind constrained-distortion AVQ is to restrict the distortion to
be below a certain maximum, and then concentrate on reducing as much as possible
the rate achieved by the algorithm. All the constrained-distortion AVQ algorithms
in previous literature use what we call threshold replenishment. In the threshold-
replenishment technique, the codebook selector updates the local codebook only if the
current source vector cannot be coded to within some threshold on the distortion using
the current local codebook. In that case, the codebook selector chooses a new code-
word from the universal codebook and adds it to the local codebook. The codebook

selector must be designed so that this new codeword is within a distance equal to the
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distortion threshold from the current source vector. The vector coder for constrained-
distortion algorithms then implements a distortion-based nearest-neighbor quantizer
using the local codebook given to it by the codebook selector.

If we denote the distortion threshold of a threshold-replenishment algorithm as
Dyhax, then we note that, for each source vector X;, the distortion between the source

vector and its quantization is at most Dy,,,; i.e.,
d(Xt7 Xt) S Dmax; (71)

for all time t. From Equation 6.33, we have

T

D(Q,) = % S (X4, K1) < Do (7.2)

t=1

for any finite process length of 7" vectors. Thus, in a threshold-replenishment algo-
rithm, the operational average distortion, D(Qt), is constrained to be at most Dy, ,y.

One can envision two methods for specifying the universal codebook for threshold-
replenishment algorithms; we call these the ezplicit and implicit methods. In the first,
the universal codebook is explicitly specified to the algorithm. That is, the codebook
selector stores the universal codebook explicitly as a finite set of vectors. Then, if the
nearest-neighbor codeword in the local codebook is too far from the current source
vector, a nearest-neighbor search over the entire universal codebook is performed to
find the closest codeword, which is then added to the local codebook. One constructs
the universal codebook so as to guarantee the existence of at least one codeword
within the distortion-threshold distance for every possible input vector.

Because a nearest-neighbor search through a large universal codebook can be quite
computationally complex, the usual approach to threshold replenishment is to specify
the universal codebook implicitly. A codebook selector with an implicitly defined
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universal codebook does not store a set of vectors. Rather, the universal codebook is
implied by a function defined on RY. This function is designed to yield the closest
codeword in the universal codebook to any given point in Y. One common approach
to implicit threshold-replenishment AVQ) is to use a lattice for the universal codebook
(see [2, 48]).

To our knowledge, all the constrained-distortion AVQ algorithms that have been
reported in previous literature have been implicit threshold-replenishment algorithms.
In what follows, we present a brief survey of these algorithms. We then discuss two
of these algorithms in greater detail in Sections 7.1.1 and 7.1.2.

Paul [52] developed a threshold-replenishment AVQ algorithm that was perhaps
the first AVQ algorithm ever reported. The Paul algorithm uses threshold replenish-
ment with the new codeword being simply the source vector itself (in which case the
universal codebook can be considered to be X). The Paul algorithm is perhaps the
simplest AVQ algorithm to be published to date; however, as we will see in Chap-
ter 9, its performance in practice is better than that of most other AVQ algorithms.
Because of these advantages, as well as its historical prominence, we discuss the Paul
algorithm in detail in Section 7.1.1.

Another threshold-replenishment algorithm was described by Wang et al. [48].
This threshold-replenishment algorithm is similar to the Paul algorithm, except that
the universal codebook takes the form of a lattice vector quantizer. This algorithm
is examined in more detail below in Section 7.1.2.

Finally Chen, Sheu, and Zhang [53] present an algorithm based on the Gold-
Washing method originally developed by Zhang and Wei [42]. The Chen-Sheu-Zhang

algorithm features a threshold-replenishment technique that uses an interpolation
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scheme to calculate the new codeword based on the local codebook and the current
source vector. Unfortunately, this interpolation was heuristically designed for the
coding of images, and is thus not applicable to general data sources. Additionally,
the interpolation is not done in such a way so as to guarantee that the new codeword
is within the distortion-threshold distance to the current source vector. The Gold-
Washing algorithm, however, is a complicated forgetting process that seems to be
theoretically superior to LRU and LFU techniques, although it is not clear from
[42] how well the Gold-Washing algorithm performs in practice relative to these two
simpler approaches. Because its limited applicability to general data sets, we do not
consider the Chen-Sheu-Zhang algorithm further here; however, we do present the
algorithms due to Paul [52] and Wang et al. [48] in greater detail in Sections 7.1.1

and 7.1.2, respectively.
7.1.1 The Paul Algorithm

The Paul algorithm [52] is perhaps the simplest AVQ algorithm to be reported in
AVQ literature. A detailed description of the algorithm is shown in Figure 7.1.

The Paul algorithm begins by finding the closest codeword, c*, to the current
source vector, X;, in the previous local codebook, C;_ 1, If the distance from the
current source vector to this closest codeword is less than the distortion threshold,
the index of this codeword is transmitted to the decoder. We also transmit a one-bit
flag to the decoder as side information to signal that we are not updating the local
codebook. We then set C; = C;_; and repeat the process for the next source vector.

If the distortion between the closest codeword and the current source vector is

greater than the distortion threshold, we update the local codebook. In this case,
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Given: distortion threshold, Dy ,x
initial local codebook, Cqy
initial time, t =1

Step 1: Find the closest codeword, c*, in the previous local codebook, C;_1:

c¢® = arg min d(Xy,c).
c€Cr_1

Step 2: If d(X,c*) < Dpax, 80 to Step 3; else go to Step 4.

Step 3: Set C; = C¢_1. Transmit the index of codeword c* to the decoder. Trans-
mit flag 0 to the decoder as side information. Go to Step 5.

Step 4: Let C; = C;—;. Find the LRU codeword of C;. Transmit the index of this
LRU codeword to the decoder. Replace the LRU codeword in C; with the current
source vector X;. Transmit flag 1 and X; to the decoder as side information.

Step 5: Set t =t + 1 and go to Step 1.

Figure 7.1: The Paul algorithm [52]

we form C; by replacing the LRU codeword of C;_; with the current source vector.
As side information, we transmit the entire new codeword to the decoder, as well as
a one-bit flag indicating that we are updating the codebook. We also transmit the
index of the LRU codeword to the decoder, so as to specify to the decoder where in
the codebook to place the new codeword.

We now make several remarks regarding the Paul algorithm with respect to the
AVQ communication-system model of Figure 6.3 in Chapter 6. Regarding the code-
book coder, notice that the Paul algorithm can potentially update the local codebook
for each source vector. Consequently, it can adapt very quickly to abrupt changes in
the source statistics. However, the amount of side information transmitted can be

quite substantial, as we must send the entire new codeword to the decoder for each
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update. Since the new codewords are vectors appearing in the source data, the univer-
sal codebook for the Paul algorithm is the entire source alphabet, X~V. Consequently,
we must use a lossy codebook coder as discussed in Section 6.2.3. The original Paul
algorithm was designed for speech-spectrum data and used a perceptually-weighted
technique to quantize each codeword to about 50 bits [52]. Goodman et al. [54]
have modified Paul’s original codebook coder, introducing techniques appropriate for
image-data vectors. For reasons discussed previously, we will not consider the details
of these ad hoc codebook coders further here. Rather, when we empirically evaluate
the Paul algorithm in Chapter 9, we will use a uniform, high-resolution scalar quan-
tizer for the codebook coder and neglect any distortion due to codebook mismatch.

The original Paul algorithm used a fixed-length index coder. A more efficient
method would use a variable-length index coder to achieve a coding closer to the
first-order entropy of the index process. Such a variable-length index coder could very
well be a static-mapped index coder, but other techniques of only marginal additional
complexity can yield better practical performance. For example, Goodman et al. [54]
present a variation of the Paul algorithm that uses a move-to-front technique to
“rearrange” the local codebook after each codebook update.

The move-to-front algorithm [55] is a heuristic that has been shown to aid lossless
coding techniques in achieving a lower rate. The move-to-front algorithm involves
rearranging the index assignments of the codewords of C; during coding. Equivalently,
one can view this index reassignment as a shuffling of the actual positions of the
codewords within the codebook, hence the name “move-to-front.” In the modification
to the Paul algorithm presented by Goodman et al. [54], the move-to-front algorithm

operates as follows. After the index of the closest codeword is transmitted to the
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Given: distortion threshold, Dy ,x
initial local codebook, Cqy
initial time, t =1

Step 1: Find the closest codeword, c*, in the previous local codebook, C;_1:

c¢® = arg min d(Xy,c).
c€Cr_1

Step 2: If d(X,c*) < Dpax, 80 to Step 3; else go to Step 4.

Step 3: Set C; = C¢_1. Transmit the index of codeword c* to the decoder. Trans-
mit flag 0 to the decoder as side information. Move ¢* to the front of C;. Go to
Step 5.

Step 4: Let C; = C;—1. Insert current source vector X; into the front of C;. Incre-
ment the index number of all the other codewords of C;. Delete the codeword with
the highest index. Transmit flag 1 and X; to the decoder as side information.

Step 5: Set t =t + 1 and go to Step 1.

Figure 7.2: The move-to-front variation of the Paul algorithm [52, 54]

decoder, the codeword is moved to the front (index number 0) of the local codebook
in both the encoder and the decoder. Consequently, codewords used frequently tend
to be assigned small index values. A variable-length entropy coder designed on this
sequence of index values can perform substantially better than static Huffman coding
designed on the sequence of indices resulting from the use of the original, unshuffled
codebook [55]. In the algorithm presented by Goodman et al. [54], when a codeword
is added to the codebook, it is added to the first slot (index number 0) of the local
codebook and the indices of each of the remaining codewords are incremented. The
last codeword in the codebook is deleted. This scheme inherently implements a LRU
forgetting algorithm; it has the additional advantage that, since both the encoder and

decoder know where to put the new codeword, transmission of an index specifying the
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point of insertion of the new codeword is not needed. Because of these advantages, we
will use a move-to-front index coder when we evaluate the performance of the Paul
algorithm in Chapter 9. This move-to-front variation of the Paul algorithm is shown
in Figure 7.2.

Despite the relative simplicity of the Paul algorithm in comparison to other AVQ
algorithms, it does perform quite well in practice, as we will see in Chapter 9. The
Paul algorithm ensures that each source vector is coded with a distortion which is,
at most, the value of distortion threshold. When the Paul algorithm updates the
local codebook, it is “greedy;” that is, when it expends bits for a codebook update, it
gets the best return, in terms of distortion, for that expense. Next, we examine the
Wang-Shende-Sayood [48] algorithm, which is similar to the move-to-front variation

of the Paul algorithm.

7.1.2 The Wang-Shende-Sayood Algorithm

The algorithm developed by Wang, Shende, and Sayood [48] and detailed in Fig-
ure 7.3 is an implicit threshold-replenishment algorithm very similar to the Paul algo-
rithm. The main difference between the two algorithms occurs in the implementation
of the universal codebook. Wang et al. use an infinite collection of lattice quantizer
points distributed across Euclidean space " (for more information on lattice quan-
tizers, refer to [2, 56, 57]). The lattice quantizer is chosen so that the maximum
distance between any two lattice points is at most D,,,y, the distortion-threshold
parameter to the algorithm. As shown by Conway and Sloane [56], there exist fast
algorithms that yield the closest lattice point to a given source vector for the lat-

tices commonly used as vector quantizers. In the Wang-Shende-Sayood algorithm,
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Given: distortion threshold, Dy,
lattice implementing the universal codebook, C*
initial local codebook, Cy C C*
initial time, t =1

Step 1: Find the closest codeword, c*, in the previous local codebook, C;_1:

¢ =arg min d(Xy,c).
c€Ci—1

Step 2: If d(X;, ¢*) < Dpax, g0 to Step 3; else go to Step 4.

Step 3: Set C; = C;_;. Transmit the index of codeword c* to the decoder. Trans-
mit flag 0 to the decoder as side information. Move ¢* to the front of the local
codebook. Go to Step 5.

Step 4: Find the codeword in the universal codebook that is closest to the source
vector:

v* = arg ‘r,reucq d(X¢,v).

Set C; = Cy—1. Insert v* into the front of C;. Increment the index number of all
the other codewords of C;. Delete the codeword with the highest index. Transmit
flag 1 and v* to the decoder as side information.

Step 5: Set t =t + 1 and go to Step 1.

Figure 7.3: The Wang-Shende-Sayood algorithm [48]
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the universal codebook can be considered to be implicitly specified by one of these
lattice algorithms. Wang, Shende, and Sayood do not specify a particular lattice to
be used with their algorithm. Later, in Chapter 9, we evaluate the performance of
the Wang-Shende-Sayood algorithm using the Dy lattice [57] because of its ease of
implementation. The consideration of more sophisticated lattices is beyond the scope
of this work.

Similar to the move-to-front variation of the Paul algorithm, the Wang-Shende-
Sayood algorithm also uses the move-to-front heuristic in the index coder. Wang et
al. originally reported with their algorithm a lossy codebook-coder method designed
to lower the amount of side information. In their codebook-coder scheme, instead of
sending the entire new codeword, Wang et al. update only a subset of the codeword
components. We, however, assume an idealized scalar-quantizer codebook coder for
the reasons previously discussed.

We now consider the second category of AVQ algorithms, the constrained-rate
algorithms. Contrary to the constrained-distortion algorithms considered thus far,
the constrained-rate algorithms place a limit on the rate of the algorithm rather than

on the distortion.

7.2 Constrained-Rate AVQ Algorithms

The class of constrained-rate AVQ algorithms has enjoyed the most attention in
AVQ literature. Indeed, most of the algorithms reported fall into this category. We
briefly discuss of a number of them in this section, and present the details of a few
of the algorithms in Sections 7.2.2 through 7.2.6.

The main idea behind constrained-rate AV(Q) is to restrict the rate of the algorithm

to be less than a certain maximum, and then concentrate on reducing the distortion
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as much as possible. The most common ways to constrain the rate are to set some
limits on the number of codewords that the codebook selector can update at a given
time and to restrict these updates to occur at certain time intervals.

For example, a popular paradigm for constrained-rate AVQ algorithms is as fol-
lows. Suppose we have a universal codebook of size K* from which the codebook
selector produces a new local codebook of size K after the coding of 7 source vectors.
That is, codebook updating occurs spaced in regular intervals of 7 source vectors.
Thus, we have an adaption interval of T vectors. The average code length, as defined

in Equation 6.19, is

B0 = 7 D 0(aufX0) < Tog, K] (73)

for a finite process length of T vectors. Additionally, the average codebook code

length, as defined in Equation 6.27, is

L(S;) = NL Zi: < [logQ <[I((ﬂ : (7.4)

The operational rate of this AVQ system then satisfies

L(Q) = L(W) + L(5) < + ([1og2 Kl +1 [mgQ (f{ )D . (75)

The quantity on the right-hand side of Equation 7.5 is defined to be Rp.. In this
type of constrained-rate AV(Q system, the operational rate is constrained to be at
most R, with the operational rate equaling R,,,x when both the index coder and
the codebook coder use fixed-length codes. The use of variable-length codes in either
component will, in general, lower the operational rate below Ry,.;. Other constrained-

rate AVQ algorithms feature a similar constraint on the rate.
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There are two types of constrained-rate AVQ algorithms, local-context algorithms
and codebook-retraining algorithms. We survey these two categories of algorithms

below in Section 7.2.1 and 7.2.3, respectively.
7.2.1 Local-Context Algorithms

Local-context algorithms assume that the source possesses a certain degree of local
stationarity. Consequently, local-context algorithms base the codebook updates on
calculations performed over a certain length of time over which the source statistics
are expected to be approximately stationary. This time interval is called the adaption
interval. The exact length of time for which the local-stationarity assumption can
be considered valid obviously varies from source to source and cannot be expected to
remain constant for all time for a particular source. However, for simplicity, local-
context algorithms generally fix the length of the adaption interval in advance and
do not change it during coding.

The general operation of local-context algorithms is as follows. A buffer is filled
with all the vectors from the current adaption interval. The codebook selector cal-
culates certain measurements on the vectors of the adaption interval and then uses
these measurements to select a local codebook from the universal codebook. This lo-
cal codebook is then used by the vector coder to code one or more source vectors from
the current adaption interval. The algorithm then repeats the process for the next
adaption interval. Note that, in general, consecutive adaption intervals may overlap;
however, most local-context algorithms use nonoverlapping adaption intervals.

Gersho and Gray survey a number of local-context AVQ algorithms in Chapter 16
of their VQ book [2]. Among these methods, the mean-adaption, gain-adaption,

switched-codebook-adaption, and vector-excitation-coding algorithms can each be
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viewed as variants of the local-context technique in which the local codebook is deter-
mined and then used to code all the source vectors of the current adaption interval.
The adaption intervals for these algorithms are nonoverlapping. We consider the gain-
adaption algorithm in detail in Section 7.2.2 as an example of the class of local-context
algorithms.

Other local-context algorithms are those reported by Nasrabadi and Feng [44] and
Chang et al. [58]. In the algorithm by Nasrabadi and Feng [44], for the current source
vector, a probabilistic score is calculated based on the conditional probabilities of the
indices of previously encoded vectors. The universal codebook, which is trained in
advance with the generalized Lloyd algorithm, is sorted using this probabilistic score.
The local codebook is the first K of these sorted codewords. The current source
vector is coded with this local codebook, and then the process repeats for the next
source vector. The algorithm due to Chang, Chen, and Wang [58] features a universal
codebook that is organized in a tree structure. The current local codebook is chosen
as a subtree of the universal codebook based upon past usage statistics accumulated at
the nodes of the tree of the universal codebook. Both the Nasrabadi-Feng and Chang-
Chen-Wang algorithms use overlapping adaption intervals. Additionally, since the
local-context statistics are accumulated based on the coded past of the source rather
than the true past of the source, side information need not be sent to the decoder.

Given our mathematical definition of AVQ of Chapter 6, two other algorithms
can be technically considered to be local-context AVQ algorithms. However, in the
literature, finite-state V@ (Chapter 14 of [2]) and predictive VQ (Chapter 13 of [2])
are usually viewed as classes of VQ algorithms separate from adaptive VQ [2]. Con-

sequently, we do not consider them further here.
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In the next section, we describe the gain-adaption algorithm in detail. Most
other local-context algorithms are similar to the gain-adaption algorithm, the main
difference usually being only the type of calculation (gain, mean, etc.) that governs
the local-codebook selection. Hence, the gain-adaption algorithm is considered in
detail as an example of the entire class of local-context algorithms. Afterwards, in
Section 7.2.3, we continue our discussion with the second class of constrained-rate

AVQ algorithms, the codebook-retraining algorithms.
7.2.2 The Gain-Adaption Algorithm

Gain adaption [2] is a local-context AVQ algorithm that compensates for variations
in the short-term power of nonstationary sources. Power variations are typical of many
real-world signals that possess a wide dynamic range, such as speech and audio. It
is assumed that such signals possess short, stationary contexts at one power level.
Further, it is assumed that all the stationary contexts possess identical statistics,
differing only in the short-term power of the signal. A gain-adaptive system, as
shown in Figure 7.4, consists of a gain estimator which computes the local gain over
a short window of source vectors which are stored in a frame buffer. In general, gain
adaption can be based on vectors in the past or in the future relative to the current
source vector. In forward gain adaption, which is the algorithm shown in Figure 7.4,
the frame buffer stores a short sequence of source vectors which, following the gain
computation and quantization, are “normalized” by the gain. These “normalized”
vectors are then passed to a fixed vector quantizer. A detailed description of this
algorithm is shown in Figure 7.5.

It appears initially that, since the vector quantizer is fixed, the gain-adaption al-

gorithm possesses a single local codebook rather than a universal codebook. However,
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Figure 7.4: Block diagram of the gain-adaption algorithm [2]

further investigation reveals the contrary. Suppose we create a new algorithm as fol-
lows. We construct a universal codebook by multiplying each of the codewords of the
fixed codebook of the gain-adaption algorithm by all the possible quantized gain val-
ues. The quantized gain then becomes the codebook-selection mechanism that selects
the appropriate local codebook from this universal codebook. The buffered source
vectors are no longer “normalized,” but coded directly with the local codebook. This
“new” algorithm functions identically to the gain-adaption algorithm and is merely an
alternate definition of gain adaption consistent with the AV(Q communication-system
model of Chapter 6. Many of the local-context techniques presented in by Gersho
and Gray [2], such as the mean-adaption and switched-codebook-adaption algorithms,
also possess a structure similar to that of gain adaption that, at first sight, obscures
the fact that they can be considered to have a universal codebook.

The gain-adaption algorithm presented here can be considered to be representative

of the local-context algorithms. In the next section, we consider the second class of
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Given: adaption-interval length, 7
fixed (nonadaptive) VQ codebook, C
scalar gain quantizer, g(-)
adaption-interval counter, m =1

Step 1: Define set 7, as the current adaption interval m,
T =X, Xig1, -5 Xigro1 )

where t = 7(m — 1) + 1.

Step 2: Calculate the average gain of the adaption-interval vectors:

1 2
9=- XEZTM X[,
assuming that the process has zero mean.
Step 3: Scalar quantize the gain,
9=14a(9),
and transmit § to the decoder as side information.

Step 4: For each vector X € T,,, do:

Step 4a: Normalize X with § and vector quantize; i.e., find c*:

c” = argmin d(X/g,c).

Step 4b: Send the index of ¢* to the decoder.

Step 5: Set m =m + 1 and go to Step 1.

Figure 7.5: The gain-adaption algorithm [2]
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constrained-rate AV(Q algorithms, the codebook-retraining algorithms. We present
detailed descriptions of a few of these codebook-retraining algorithms in Section 7.2.4

through 7.2.5.
7.2.3 Codebook-Retraining Algorithms

Most of the AVQ algorithms reported in prior literature fall into the category of
codebook-retraining algorithms. These algorithms are generally attempts to modify
standard, nonadaptive V(Q-design techniques to suit an environment with changing
statistics. We discussed various VQ-design methods in Section 5.3. The AVQ algo-
rithms discussed here use variations of either the generalized Lloyd algorithm (Sec-
tion 5.3.1) or Kohonen learning (Section 5.3.2) and consequently employ distortion-
based nearest-neighbor vector coders. AVQ algorithms derived from ECVQ (Sec-
tion 5.3.3) fall into the category of rate-distortion-based AVQ, to be discussed in
Section 7.3.

There are two types of codebook-retraining AVQ algorithms, batch and online.
In general, batch algorithms extract a local training set of vectors from past or fu-
ture vectors relative to the current source vector. Then a training algorithm, often
quite computationally intense, is run, generally over many iterations through the lo-
cal training set, to produce a new codebook. After the new codebook is generated,
some or all of the new codewords replace old codewords in the previous local code-
book to generate the new local codebook. Usually, the codebook-retraining process
takes place at regular intervals during the coding of the source. For example, AVQ
algorithms designed for image sequences often design a new codebook for each image
of the sequence and use the new codebook to code that image; these algorithms are

commonly called frame adaptive (e.g., [59]).
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Because batch AV(Q algorithms generally require substantial buffering and large
amounts of computation for each new codebook produced, there has recently been
increasing interest in the development of online codebook-retraining AVQ algorithms.
A codebook-training algorithm is considered to be an online algorithm if the code-
words are updated concurrently with the coding without any buffering or iterative
computation. The distinction between online and batch algorithms can be somewhat
vague, as subtle details of an algorithm may determine whether it is classed as one or
the other. Artificial-neural-network algorithms, such as variations of Kohonen learn-
ing [34], are one common method for implementing online codebook-retraining AVQ
algorithms.

The composition of the universal codebook for both batch and online algorithms
depends on the particular method of VQ training used by the algorithm. Oftentimes,
if the training algorithms can potentially produce any vector, the universal codebook
will be simply the entire Euclidean space Y. Also possible are training algorithms
that are restricted to vectors meeting some criterion, such as that of lying on a lattice.
In these algorithms, the universal codebook is then defined as the set of all vectors
meeting the criteria.

Many of the batch codebook-retraining algorithms are based on the generalized
Lloyd algorithm. The algorithm by Gersho and Yano [60], which is presented in
greater detail in Section 7.2.4, monitors both the distortion and probability-of-use
of each codeword and splits the codeword with the highest product of these two
quantities. The generalized Lloyd algorithm is run on both of the resulting codewords.
In algorithms by Goldberg and Sun [61, 59], one or more iterations of the generalized

Lloyd algorithm are run over a local training set. Codewords in the trained codebook
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that have changed significantly from their counterparts in the previous local codebook
are added to the codebook. We discuss the algorithms by Goldberg and Sun in greater
detail in Section 7.2.5.

Some batch codebook-retraining algorithms feature neural-network techniques.
For example, the algorithm due to Lancini, Perego, and Tubaro [49], uses competitive
learning, a variation of Kohonen learning, to periodically train a new codebook, with
significant new codewords being added to the local codebook. We discuss the Lancini-
Perego-Tubaro algorithm more thoroughly in Section 7.2.6.

Other batch algorithms based on neural networks include algorithms presented by
Fang et al. [62] and Chen et al. [63]. These algorithms use a variation of Kohonen
learning in which the learning rule is modified based on how frequently a codeword
has been updated.

Finally, Lee and Peterson [64] present an online codebook-retraining algorithm
that is a variation of Kohonen learning in which a lattice of codewords is allowed to
grow or shrink based on changes in codeword distortion and codeword probabilities
induced by changing source statistics. The Lee-Peterson algorithm unfortunately
requires the use of a large amount of side information which limits its use in practice.

We discuss the Gersho-Yano algorithm, the Goldberg-Sun algorithms, and the
Lancini-Perego-Tubaro algorithm next in Sections 7.2.4 through 7.2.6, respectively.
Afterwards, in Section 7.3, we consider the final class of AVQ algorithms, the rate-

distortion-based algorithms.
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7.2.4 The Gersho-Yano Algorithm

One of the most well known AVQ algorithms is due to Gersho and Yano [60].
This algorithm falls into the category of batch codebook-retraining algorithms. The
Gersho-Yano algorithm is based on certain theoretical results derived for the optimal
nonadaptive VQ of a random vector.

The theoretical underpinnings of the Gersho-Yano algorithm are as follows [60].
Consider the nonadaptive V@ of a random vector, X. As discussed in Section 5.1, the
VQ codebook has K codewords with corresponding partition regions, R;. We define

the partition probabilities as
p(i) = prob{X € R;}, (7.6)
and the partition distortions as
d(i) = E |d(X,X) | X € R;| . (7.7)
Then the partial distortions for each partition region are defined as
D(4) = p(d) - d(3) (7.8)

(60, 29]. Gersho [29] argues that, for an asymptotically large number of codewords,
the partial distortions D(i) for the optimal vector quantizer approach a constant
independent of i. The Gersho-Yano AVQ algorithm [60] extends this result to the
coding of random processes by attempting to maintain equal partial distortions over
time.

Gersho and Yano describe two similar variations of the algorithm, a basic al-
gorithm and a slightly more complicated algorithm oriented towards image coding.
We consider only the former of these two algorithms for reasons of simplicity. This
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Given: adaption-interval length, 7
initial local codebook, Cqy
adaption-interval counter, m =1

Step 1: Define set 7, as the current adaption interval m,
Tm = {Xe, Xig1, -0, Xygro1}
where t = 7(m — 1) + 1.
Step 2: Calculate the partial distortions:

Step 2a: Map each of vector of 7, to a partition region using the previous local
codebook:

Ri:{XETm:arg min d(X,C):Cz‘}y

c€Cm_1

where ¢; € Cpy_1.

Step 2b: Calculate the partition probabilities, the partition distortions, and the
partial distortions:

? XeER;

pG) = i, i) = e 3 diXoe)

Step 3: Let Cimax and cimin be the codewords corresponding to the partitions
with the largest and smallest partial distortions, respectively. Split cjpmax into
two codewords, Cimax1 and C;max2, by adding small random deviations to each
codeword component.

Step 4: Run one iteration of the generalized Lloyd algorithm using R;max as the
training data and c;pax1 and cipmaxe as the codewords.

Step 5: Set C,, = Cin_1. Replace Cimax € Ci With Cimax1 and Cimin € Cp, with
Cimax2-

Step 6: Send Cimaxi, Cimax2, and their codebook indices to the decoder as side
information.

Step 7: Vector quantize the vectors of 7, with C,,, set m = m + 1, and go to
Step 1.

Figure 7.6: The Gersho-Yano algorithm [60]
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variation of the Gersho-Yano algorithm is described in Figure 7.6. The operation of
the algorithm is as follows. The source process is partitioned into consecutive sets
of vectors called adaption intervals. To code the current adaption interval, first the
codebook selector calculates the partial distortions of the codebook using the vectors
of the adaption interval. The codebook selector “splits” the codeword of the parti-
tion region with the largest partial distortion into two new codewords. The codebook
selector runs one iteration of the generalized Lloyd training algorithm for those vec-
tors of the current adaption interval that map into this split region; this training
iteration refines the location of the two new codewords. These two new codewords
enter the local codebook, replacing the old codeword that was split and the codeword
that belongs to the region with the smallest partial distortion. The vector coder then
codes all the vectors of current adaption interval with the new local codebook. As
side information, the Gersho-Yano algorithm must send the two new codewords to
the decoder, as well as their addresses in the new local codebook. The second, more
complicated version of the Gersho-Yano algorithm operates similarly to the basic al-
gorithm just outlined, the main difference being that a more complicated codebook
selector performs multiple codeword splittings until the all the partial distortions are
below a distortion threshold.

We discuss the Goldberg-Sun algorithms in the next section. These algorithms

also make use of the generalized Lloyd algorithm for codebook training.
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7.2.5 The Goldberg-Sun Algorithm

Goldberg and Sun [61, 59] describe several similar algorithms that use the gen-
eralized Lloyd algorithm to train a codebook from which one or more codewords are
selected to be added to the local codebook. We describe here the simplest of these
algorithms.

The operation of this simple variant of the Goldberg-Sun family of algorithms
is described in Figure 7.7. The codebook selector runs one or more iterations of the
generalized Lloyd algorithm on the vectors of the current adaption interval, producing
a codebook with the same number of vectors as the previous local codebook. Note that
the previous local codebook is used as a “seed” for the generalized Lloyd algorithm.
The Euclidean distance between each of the codewords of the new codebook and
their counterparts in the local codebook is calculated. If this distance is greater than
a prespecified threshold for a certain new codeword, the codebook selector inserts
the new codeword in the place of its counterpart in the local codebook. The side
information for this algorithm then consists of a set of flags specifying whether each
codeword is replaced or not, as well as the entire codeword for those replaced vectors.
The vector coder used in this algorithm is the standard, distortion-based nearest-
neighbor mapping.

The algorithm outlined here is a technique called “codebook replenishment by
mean shift” by Goldberg and Sun [61]. The algorithms presented by Goldberg and
Sun [61, 59] also feature other, more ad hoc techniques which we do not consider here.

Both of the codebook-retraining algorithms we have seen thus far use the general-
ized Lloyd algorithm for codebook training. Next, we examine a codebook-retraining

algorithm that features a neural-network technique.
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Given: adaption-interval length, 7
replenishment threshold, §
initial local codebook, Cqy
adaption-interval counter, m =1

Step 1: Define set 7, as the current adaption interval m,
T = A{Xt, Xeg1, -+ Xigro1 )

where t = 7(m — 1) + 1.

Step 2: Run one or more iterations of the generalized Lloyd algorithm. Use 7,
as the training data and C,,_; as the initial codebook to the generalized Lloyd
algorithm. Denote the new codebook produced as C'.

Step 3: Set Cp, = Cr—1. For each codeword ¢} € C' with corresponding codeword
c; € Cp, do

Step 3a: If
c; —ci| >4,
replace c; in C,, with cj.

Step 4: Send, as side information, a one bit flag for each ¢; € C,, indicating
whether or not the codeword was updated. For each updated codeword, send the
entire new codeword.

Step 5: Vector quantize the vectors of 7,, with C,,, set m = m + 1, and go to
Step 1.

Figure 7.7: The Goldberg-Sun algorithm [61]
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7.2.6 The Lancini-Perego-Tubaro Algorithm

A batch codebook-retraining algorithm developed by Lancini, Perego, and Tubaro
[49] features a variation of Kohonen learning [34] called competitive learning [36]. A
detailed description of the Lancini-Perego-Tubaro algorithm is given in Figure 7.8.

In the Lancini-Perego-Tubaro algorithm, a random set of vectors are chosen from
the current adaption interval. These vectors form an initial codebook given to a
competitive-learning V(Q-training algorithm that iterates over the vectors of the adap-
tion interval until convergence. Then, for each codeword in the newly trained code-
book, the closest codeword in the previous local codebook is found. The codebook
selector replaces the Kr LRU codewords in the previous codebook with the Kz most
distant new codewords to form the current local codebook. The vectors of the adap-
tion interval are quantized using a distortion-based nearest-neighbor vector coder with
this current local codebook. Note that the only side information that needs to be sent
are the K most distant codewords as the decoder can keep track of the frequency-
of-use statistics and, consequently, knows where to place the updated codewords in
the new local codebook.

The algorithm for Kohonen learning was previously presented in Figure 5.4. Com-
petitive learning [36] is a simplified variant of Kohonen learning in which the neigh-
borhood function is 1 for the nearest-neighbor codeword and 0 for all others. See
Section 5.3.2 for more details.

Up to now, we have considered two classes of AVQ algorithms, the constrained-
distortion and the constrained-rate algorithms. In the next section, we present the
final class of AV(Q algorithms, the rate-distortion-based algorithms. We will see that

these algorithms update the local codebook using both rate and distortion, so that
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Given: adaption-interval length, 7
K, the number of new codewords to train
Kg, the number of vectors to replace
initial local codebook, Cqy
adaption-interval counter,m =1

Step 1: Define set 7, as the current adaption interval m,
T = {Xt,; Xog1, -, Xigr 1}

where t = 7(m — 1) + 1.

Step 2: Randomly choose Kt vectors from 7, to serve as an initial codebook, Cr,
for training.

Step 3: Train a new codebook, C’, using a competitive-learning algorithm with Cr
as the initial codebook and 7, as the training data.

Step 4: For each codeword ¢} € C' do

Step 4a: Find the closest codeword, ¢* € C,,, 1,

c¢* =arg min d(c},c).
c€Cm—1

Step 4b: Find the distance to the closest codeword,
d; = d(c}, c*).

Step 5: Let C,, = Cpy_1. Insert the Kg codewords ¢’ with the largest distances §
into Cyy,, replacing the Kr LRU codewords of C,,.

Step 6: Vector quantize the vectors of 7, with C,,, set m = m + 1, and go to
Step 1.

Figure 7.8: The Lancini-Perego-Tubaro algorithm [49]
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a codebook update is done only if it is favorable in the rate-distortion sense. This
is in contrast to the algorithms presented thus far which choose to update the local
codebook to keep either the rate or the distortion alone below a certain constraint

without regard to the cost incurred in the opposite quantity.

7.3 Rate-Distortion-Based AVQ Algorithms

In the two classes of AVQ algorithms presented thus far, one quantity, either the
rate or the distortion, is constrained to be less than some maximum value. The
codebook selector performs updates to the local codebook in order to satisfy this
constraint, regardless of what the update costs in terms of the other quantity. For
example, in constrained-distortion AV(Q, codebook updates are performed whenever
it is necessary to add a codeword to keep the distortion below the distortion thresh-
old. However, the codebook selector of a constrained-distortion algorithm does not
attempt to evaluate whether the reduction in distortion due to the update is worth
its cost in rate. Similarly, constrained-rate algorithms fail to weigh the frequency
of updates allowed by the rate constraint against the distortion performance of the
algorithm. Additionally, the vector coders of constrained-distortion and constrained-
rate algorithms implement nearest-neighbor mappings based solely on distortion. Al-
though the rate-distortion theory of Chapter 4 justifies the approaches taken by these
two classes of algorithms for stationary processes, the third class of AV(Q algorithms
that we present in this section is capable of better performance in the more realistic
and practical case of nonstationary sources.

This new class of algorithms, rate-distortion-based AVQ, incorporates both the

rate and the distortion into a cost function. The minimization of this cost function
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results in both quantities being considered in both the codebook selector and the
vector coder. Consequently, the codebook selector of a rate-distortion-based algo-
rithm weighs the potential for a reduction in distortion against the cost in rate for
each codeword update, while the vector coder selects the codeword “closest” in the
rate-distortion sense.

The only rate-distortion-based AVQ algorithm to appear in previous literature is
the algorithm by Lightstone and Mitra [46, 51], although we present a new algorithm
of this class in Chapter 8. The Lightstone-Mitra algorithm is based on the ECVQ
method of [30] nonadaptive VQ design which was discussed in Section 5.3.3.

Recall that the ECVQ algorithm features a cost function of the form

J(Q) = D(Q) + AL(Q), (7.9)

where the rate-distortion parameter A controls the relative weighting of the rate
against the distortion in the cost function. The codebook selector of the Lightstone-
Mitra algorithm uses ECVQ to generate new codewords based on the minimization
of Equation 7.9. Additionally, the codebook selector uses a cost evaluation similar to
Equation 7.9 to determine whether the new codewords generated with ECVQ should
be allowed to update the codebook. Finally, we note that the Lightstone-Mitra algo-
rithms employs a vector coder implementing a modified nearest-neighbor rule, which,
like that of ECVQ), incorporates both rate and distortion.

A detailed description of the Lightstone-Mitra algorithm is provided in Figure 7.9.
The operation of the algorithm is as follows. The codebook selector first runs the
ECVQ training algorithm on the vectors of the adaption interval. The previous local
codebook, C,,_1, is used as the initial codebook to the ECV(Q algorithm. Addition-
ally, because the ECVQ algorithm assumes the use of a variable-length index coder,
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Given: adaption-interval length, 7
rate-distortion parameter, A
initial local codebook, Cqy
initial codeword probabilities, po (%), for each codeword c; € Cg
adaption-interval counter, m =1

Step 1: Define set 7, as the current adaption interval m,
Tm =X, Xog1, -, Xigr 1}

where t = 7(m — 1) + 1.

Step 2: Run one iteration of ECVQ. Let 7T, be the training set, C,, 1 be the initial
codebook, I(ym—1(c;)) = —log, pm—1(i) be the initial codeword lengths, and A be
the rate-distortion parameter to the ECVQ algorithm. The ECVQ algorithm
returns new codebook C’' with new probabilities p'(7) for each ¢} € C'.

Step 3: Set C,, = Cp—1 and py,, (1) = p'(¢) for all i. Determine R; for each ¢; € Cpp:
R; = {X € T : arg rélén [d(X,c) + A-l(ym(e))] = ci} .
Step 4: For each codeword ¢; € C,, with p,,, (1) # 0 and corresponding codeword
c; € C' do:
Step 4a: Calculate the expected distortions for ¢} and ¢; and their difference:

1 1
di=—=— 3 dX,c), d== 3 dXc),
1 |R1| (ch)i 2 |Rz| (70)

XER;: XER;
Ad=d; — ds.

Step 4b: Calculate the cost of a codeword update:
Ar = I(c3) /Rl

where [(c}) is the length in bits of side information needed to send c; to the
decoder.

Step 4c: If AJ = Ad+ M- Ar <0, set ¢; = ¢}. Send ¢} and the index i to the
decoder as side information.

Step 5: For each X € T,,, send index i to decoder, where X € R;. Set m = m +1
and go to Step 1.

Figure 7.9: The Lightstone-Mitra algorithm [46]
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the codebook selector supplies the ECV(Q algorithm with initial codeword lengths,
which are calculated using the current estimates of the codeword probabilities. More
specifically, if ¢; is a codeword in C,,_1, we denote the probability of occurrence of
C; as Pp,_1(7). For this codeword, we estimate the length in bits of the output of the

variable-length index coder as

(Ym-1(ci)) = —logy pm1(0). (7.10)

Finally, we note that the rate-distortion parameter passed to the ECVQ algorithm is
the same parameter A of the Lightstone-Mitra algorithm.

The ECVQ algorithm returns a set of new codewords C' with new codeword prob-
abilities, p’(i). The codebook selector must now decide whether to add any of the new
codewords ¢ € C’ to the local codebook. For each c], the codebook selector calculates
the expected distortions, d; and dy, over the partition corresponding to c; for both
cases in which the codebook is and is not updated. The difference, Ad = d; — d»,
in these two quantities is the expected reduction in distortion due to the codebook
update. The codebook selector then calculates the rate cost, Ar, as the number of
bits that the codebook coder needs to transmit ¢, to the decoder, distributed over
each of the source vectors of the adaption interval that will benefit from the codebook
update. Note that this rate cost represents the amount of side information incurred

by a codebook update. The cost function, AJ, is formed as
AJ =Ad+ \-Ar (7.11)

using the parameter A to the algorithm. If this cost function is less than 0 for a
codeword, then the expected reduction in distortion due to updating the codebook
with this codeword outweighs the rate cost associated with this codebook update,
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and the codebook selector proceeds to update the codebook. Finally, after all the
codeword updates are completed, the vector coder codes each vector of the adaption
interval using the rate-distortion-based nearest-neighbor rule.

The algorithm of Figure 7.9 represents the implementation of the Lightstone-Mitra
algorithm that we use in Chapter 9 when we compare the performance of various AVQ
algorithms. However, the algorithm of Figure 7.9 is somewhat less general than that
originally described by Lightstone and Mitra [46, 51]. Lightstone and Mitra originally
presented an algorithm with a more general codebook coder. However, for reasons
previously discussed, we consider only a high-resolution scalar-quantization codebook
coder. Additionally, Lightstone and Mitra originally described an algorithm allowing
multiple iterations of Steps 2 through 4 in Figure 7.9, even though they note that
usually one or two iterations suffice. We use only one iteration through these steps
in our simplified variation of the Lightstone-Mitra algorithm in order to reduce the
computational complexity of the algorithm to a level more comparable to the other
AVQ algorithms under consideration.

We note one drawback to the Lightstone-Mitra algorithm as we have presented
it. Recall that the ECVQ training algorithm generally reduces the size of the code-
book during training. Consequently, the codebook C' produced by ECVQ generally
contains empty regions where p'(i) = 0. The codewords in C,, corresponding to these
empty regions are subsequently removed from any future consideration of being up-
dated since empty regions are ignored by the ECVQ algorithm. Effectively, the part
of the local codebook available to codeword updating continually gets smaller due
to an accumulation of these “dormant” codewords. Unfortunately, this effect oc-

curs only in one direction—the codebook selector of the Lightstone-Mitra algorithm
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cannot decide at a later time to start updating the codewords once they become dor-
mant. Consequently, even though a number of dormant codewords may suffice in the
initial stages of operation, the algorithm may suffer poor performance as the future
statistics of the source change. Unfortunately, the original development [46, 51] of
the Lightstone-Mitra algorithm lacks any method for the “reactivation” of dormant
codewords.

The Lightstone-Mitra algorithm is the only algorithm in prior literature from
the class of rate-distortion-based AVQ algorithms. Similar to the terminology intro-
duced for constrained-rate algorithms, we consider the existence of two subclasses of
rate-distortion-based algorithms, batch and online algorithms. The Lightstone-Mitra
algorithm, which consists of a training process run over a set of training vectors (the
adaption interval) is a batch algorithm. However, in Chapter 8, we present a new
algorithm which is an online rate-distortion-based algorithm. Our algorithm, called
generalized threshold replenishment, uses a cost function inspired by ECVQ), like the
Lightstone-Mitra algorithm. However, unlike the Lightstone-Mitra algorithm, our
generalized-threshold-replenishment algorithm resembles the Paul algorithm of Sec-
tion 7.1.1 in that codebook updates can be performed for any source vector. We will
the consider the details of our algorithm in Chapter 8. However, first we conclude
this chapter in the next section by summarizing the discussion to this point with the

presentation of a taxonomy of AVQ algorithms.
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7.4 A Taxonomy of AVQ Algorithms

Figure 7.10 depicts a taxonomy including each of the algorithms discussed in this
chapter. Additionally, we include the generalized-threshold-replenishment (GTR)
algorithm, our new rate-distortion-based AVQ algorithm that we present next in
Chapter 8.

In this chapter, we have presented three classes of AV(Q algorithms, two of which
have received significant attention in prior literature, and the third of which is a
relatively recent innovation. We have detailed algorithms from each of the three
classes. We will investigate the relative performance capabilities of these algorithms
later in Chapter 9. First, however, we present a new AVQ algorithm which is a
member of the third and most recent AV(Q category and is the topic of the next

chapter.
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Figure 7.10: Taxonomy of AVQ algorithms. The classification of each of the algorithms discussed in Chapter 7 is indicated.
The GTR algorithm refers to the generalized-threshold-replenishment algorithm presented in Chapter 8.



CHAPTER 8

THE GENERALIZED THRESHOLD REPLENISHMENT
ALGORITHM

In this chapter, we present an online rate-distortion-based AV(Q algorithm called
generalized threshold replenishment (GTR). This algorithm has similarities to those
developed by Lightstone and Mitra [46] and Paul [52]. In general terms, GTR incor-
porates a rate-distortion-based cost function similar to that of the Lightstone-Mitra
algorithm into a framework similar to that of the Paul algorithm. However, unlike the
Lightstone-Mitra algorithm, the GTR algorithm operates in an online manner rather
than requiring large amounts of batch computation. That is, codebook updates, which
can occur at any time, are based on quantities that are estimated dynamically. In
addition, the GTR algorithm differs from the Paul algorithm in that the vector coder,
as well as the codebook selector, are based on cost criteria involving both rate and
distortion measures. The GTR algorithm weighs the distortion performance against
the cost in rate in both the coding of the current source vector and the updating of
the local codebook.

In this chapter, we describe the GTR algorithm using our AV(Q communication-
system model described previously in Section 6.2. To simplify the discussion, we

present two versions of the GTR algorithm. In Section 8.1, we describe the basic
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GTR algorithm which facilitates our discussion by laying the foundation for the move-
to-front variant of the algorithm to follow in Section 8.2. Slightly more complicated
than the basic algorithm, the move-to-front variant achieves a slight performance
advantage in practice and, therefore, will be used extensively in Chapter 9 when
we compare the performances of various AVQ algorithms. However, we begin our
discussion of the GTR algorithm by considering the simpler variant first, in the next

section.

8.1 The Basic Algorithm

In this section, we describe the basic GTR algorithm, which is outlined in Fig-
ure 8.1. This simple variant of GTR algorithm operates as follows.

The first sequence of steps of the algorithm determines the codeword “closest”
to the current source vector in a rate-distortion sense. That is, the codebook selec-
tor finds the codeword in the local codebook that minimizes a cost function based
on both the distortion between the current source vector and the codeword as well
as the expected rate required to code the source vector with the codeword. More
specifically, this rate-distortion-based nearest-neighbor mapping operates as follows.
First, since the GTR algorithm assumes that a variable-length index coder is used,
the estimated lengths of the variable-length codewords are calculated from the esti-
mated probabilities, p;—i(7), of the codewords ¢; € C;—;. That is, the variable-length

codeword lengths are

L(vi(c;)) = —logy pe—1(4), (8.1)

where 7;(+) is the index coder of the AVQ system. Then, the distortion, d(c;), between

the current source vector, X;, and each codeword, c; € C;_1, is calculated. These
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Given: initial local codebook, Cy
initial codeword probabilities, po (%), for each codeword ¢; € Cg
rate-distortion parameter, A
windowing parameter, w
initial time, t =1

Step 1: Calculate initial codeword lengths of the variable-length index coder:
(yi(ei)) = —logy pe—1(i).
Step 2: Find the distortions between each codeword c¢; € C;_; and Xj:
d(ci) = d(ci, Xy).
Step 3: Calculate the cost function for each codeword
J(ci) = d(ci) + A - U(ve(cq)).-
Step 4: Find the winning codeword:

c* =arg min J(c).
gCECt—l ( )

Let the index of ¢* be denoted i*.

Step 5: Calculate the distortion improvement and rate cost of a codebook update,
as well as the rate-distortion cost function:

Ad = —6(c"), Ar = 1(Xy),
AJ=Ad+ \-Ar.
Step 6: Set C; =Cy—1. If AJ < 0, go to Step 6a. Else, go to Step 6b.

Step 6a: Set c* = X; in C;. Send to the decoder X;, index ¢*, and a flag indi-
cating a codebook update. Go to Step 7.

Step 6b: Send the index i* and a flag indicating no codebook update.
Step 7: Estimate the new codeword probabilities:

pu(i) = {[wpt_mi)] [lotn), i
[wpe—1 (i) + 1] J(w+ 1), i =i*.

Step 8: Set t =t + 1 and go to Step 1.

Figure 8.1: The basic GTR algorithm
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distortions and the variable-length codeword lengths are combined into a cost function
using the rate-distortion parameter J; i.e., the cost function, J(c;), for each ¢; € C; 4
is

J(c;) = 6(c;) + A - U(y(ci)). (8.2)
The winning codeword, c*, is chosen to be the one with the lowest cost function.
We denote the index of c* be i*. Note that the steps to this point implement an
online version of the modified nearest-neighbor rule of the ECVQ training algorithm
(Section 5.3.3).

In the next steps, the codebook selector decides whether the local codebook needs
to be updated. First, the codebook selector estimates the improvement in distortion
to be gained if the codebook is updated. If the codebook is updated, the current
source vector will be coded with zero distortion. However, if the codebook is not
updated, the current source vector will be coded with a distortion of 6(c*). Thus, the

estimated distortion improvement due to a codebook update is
Ad = —5(c"). (8.3)

Next, the codebook selector estimates the cost in rate, Ar, of the codebook update.

This estimate is the amount of side information needed to send X; to the decoder,
Ar = 1(Xy), (8.4)

where [(X;) is the number of bits used by the codebook coder to transmit X; to the
decoder.
The codebook selector uses the expected distortion improvement and the expected

rate cost in a rate-distortion-based cost function, defined as

AJ 2 Ad+ X- Ar, (8.5)
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where )\ is the rate-distortion parameter given to the GTR algorithm. If AJ < 0,
then the expected improvement in distortion outweighs the expected cost in rate,
and the codebook selector inserts X; into the local codebook by replacing c* with
X;. The codebook selector transmits to the decoder a flag indicating whether the
codebook was updated. Additionally, if the codebook was updated, the codebook
selector instructs the codebook coder to send X; as side information.

The final step of the codebook selector is to estimate the new codeword prob-
abilities using a time average. Our method of estimation assumes that the source
possesses some degree of local stationarity; i.e., the statistics over a window of w
source vectors are approximately stationary. The codebook selector estimates how

many of the past w source vectors have mapped to codeword c; € C;_; as
n—1(1) = w - pp_1(4). (8.6)

When the codebook selector has determined the winning codeword, ¢*, for the current

source vector, the new counts are calculated as

{ntla), i 07,

ny(i) = (8.7)

ng 1(2) +1, =1
The codebook selector estimates the new partition probabilities using the new code-

word counts; i.e.,

pi(i) = Z”’# (8.8)

cj €Cy Ny (])

for each c; € C;. Plugging Equations 8.6 and 8.7 into Equation 8.7 yields

_ wps1(2 w—+1), 1 # 15,

pe(d) = [wp 1()]/( ) j‘é ) (8.9)
wpe_1(1) +1] /(w+1), i=71*

After the codeword probabilities are calculated, the vector coder codes the current

source vector, and the whole algorithm repeats for the next source vector.
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The vector coder codes the current source vector using the new local codebook
determined by the codebook selector. The vector coder operates identically to Steps 1
through 4 of Figure 8.1, calculating the nearest neighbor to the current source vector
with a rate-distortion-based cost criterion. The vector coder transmits the index, ¢*,
of the winning codeword to the decoder. We note that the vector coder does not
appear explicitly as a separate step in Figure 8.1 as its operation is included in the
codebook selector (as Steps 1 through 4). That is, the codebook selector calculates
the winning codeword using the rate-distortion-based nearest-neighbor mapping of the
vector coder as the initial part of its operation. The index of this winning codeword
does not change during a codebook update. Consequently, the implementation of the
GTR algorithm depicted in Figure 8.1 does not need to include the vector coder as a
separate step.

The parameter A given to the GTR algorithm is called the rate-distortion param-
eter as it controls the tradeoff between rate and distortion within the algorithm. The
value of )\ affects not only the selection of the “closest” codeword by the vector coder
but also the codebook-update decision in the codebook selector. Like ECVQ, GTR
features a vector coder that chooses a codeword to represent the current source vector
based on both the distortion between the two vectors as well as the rate needed to
specify the codeword to the decoder. The parameter A controls the relative weight-
ing of these two quantities in this rate-distortion-based cost function. Additionally,
A controls the codebook selector by establishing the rate-distortion tradeoff in the
codebook-update decision. Consequently, the value of A ultimately determines the
performance of the algorithm, in terms of rate and distortion. Indeed, as we will

see in Chapter 9, varying the value of A\ traces out the rate-distortion performance
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curve of the algorithm. Larger values of A will focus the efforts of the algorithm on
minimizing rate over distortion, whereas smaller values of A will result in performance
with a lower distortion and a higher rate.

As a final note, we observe that the value of the estimated cost in rate, Ar, depends
on the codebook coder. In general, the codebook coder will allocate a variable number
of bits to each X; sent to the decoder. However, for reasons of simplicity discussed
in Section 6.2.3, we consider only the case in which the codebook coder is a uniform,
high-resolution scalar quantizer. In this case, Ar is a constant independent of Xj,
and the codebook-update decision rule (Equation 8.5) is identical to that of the Paul
algorithm. However, even though the update decisions rules are the same in this case,
codebook updates of the GTR algorithm are still performed in consideration of rate
and distortion since the codeword to be updated, c*, is chosen with a rate-distortion-
based vector coder rather than with a vector coder operating on distortion alone, as

in the Paul algorithm.

8.2 The Move-to-Front Variant of the Algorithm

In the basic GTR algorithm presented in the previous section, when a codebook
update was performed, the codebook selector added the current source vector to the
local codebook by replacing the codeword that was determined to be the closest in a
rate-distortion sense. In this section, we describe the move-to-front GTR algorithm.
In this variant of the algorithm, codewords are added to the local codebook in a
move-to-front fashion, effectively replacing the LRU codewords. The move-to-front
GTR algorithm replaces Steps 6 and 7 of the basic algorithm (Figure 8.1) with the

steps shown in Figure 8.2 and operates as follows.
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Step 6: Set C; =Cy—1. If AJ < 0, go to Step 6a. Else, go to Step 6b.

Step 6a: Insert X; in the front of C;. Increment the indices of all the other
codewords. Delete the codeword with the highest index. Send to the decoder
X, and a flag indicating a codebook update. Go to Step 7.

Step 6b: Send the index i* and a flag indicating no codebook update. Move c*
to the front of C;.

Step 7: Estimate the new codeword probabilities. If AJ > 0, go to Step 7a. Else,
go to Step 7b.

Step 7a: Estimate the new codeword probabilities as:

& ) wpe—1(9)] /(w + 1), i #i%,
Peld) = {[wpt—l(i) +1)/w+1), i=i~

Rearrange the indices of the probabilities to match the move-to-front rear-

rangement of C; i.e., move p;(i*) to index 1, shifting all the other probabil-
ities. Go to Step 8.

Step 7b: Form the new codeword counts as:
(i) = {“‘”’t‘l(’)’ 7

*

wpe—1(1)/2, i=1i*.

Let K be the size of the local codebook; i.e., K = [C¢|. Set ni(K) = ny(i*).
Calculate the new codeword probabilities as:

N 0]
Bli) = Zlgng n(j)

Rearrange the indices of the probabilities to match the move-to-front rear-
rangement of Cg; i.e., move p;(K) to index 1, shifting all the other probabil-
ities.

Figure 8.2: The move-to-front GTR algorithm. These steps replace the corresponding
steps in the basic GTR algorithm of Figure 8.1.
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If the codebook is not updated, the codebook selector simply moves c* to the
front of the codebook. However, if the codebook selector updates the codebook, i.e.,
if AJ < 0, the codebook selector adds current source vector X; to the local codebook.
In this case, instead of replacing c*, the codebook selector places X; in the front of
C;. All the other codewords are shifted to the next highest index and the one with
the highest index (the LRU codeword) is deleted.

The estimation of the new codeword probabilities is the same as in the basic
algorithm, if the codebook was not updated. However, in the case of codebook
update, the move-to-front insertion of X; necessitates a modified calculation of the
codeword probabilities. In this case, the codebook selector “splits” the probability of
partition ¢* between the new codeword, X;, and c*. Figure 8.2 gives the details of
how this probability “split” is accomplished. After the new codeword probabilities
are calculated, they are rearranged so as to match the move-to-front rearrangement
of C;.

Like the move-to-front variant of the Paul algorithm (Figure 7.2 of Section 7.1.1),
the move-to-front GTR algorithm effectively implements a LRU-replacement strategy
with the added advantage that the index of the LRU codeword does not need to be
transmitted to the decoder. As we will see in Chapter 9, the move-to-front variant
of the GTR algorithm provides a slight improvement in rate-distortion performance
over the basic algorithm, although the additional computational cost is negligible.
Consequently, we will use the move-to-front variant when we compare the performance
of the GTR algorithm with that of the AVQ algorithms presented in Chapter 7. This

performance evaluation is the topic of the next chapter.
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CHAPTER 9

EXPERIMENTAL RESULTS

In this chapter, we compare the performance of the AV(Q algorithms presented in
Chapters 7 and 8. We will consider two sets of sources, a nonstationary Wiener process
and an image sequence. For each, we evaluate the performance of the AVQ algorithms
for a range of different rates and distortions. In the case of the Wiener process, we
compare the performance of the algorithms to the theoretical rate-distortion function
given in Section 4.5.2.

To evaluate the rate-distortion performance of an AVQ algorithm, we use the
operational rate and distortion measures introduced in Equations 6.35 and 6.33 of
Section 6.2.4. The operational distortion is simply the time average of the distortion
between the original source process and the coded output. In this chapter, we use
the mean squared error (MSE) as the operational distortion measure.

The operational rate used is the sum of the time-average rates of the codings
produced by the index coder and the codebook coder. As discussed in Section 6.2.1,
we estimate the average code length of the index coder, i(VVt), as the first order
entropy of the index process, I;. As discussed in Section 6.2.3, we assume each

algorithm uses a uniform, high-resolution scalar quantizer for the codebook coder.
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Consequently, the average codebook code length, f/(gt), is a fixed number of bits per
vector component for all time. The operational rate, L(Q;), is then the sum of L(WW})
and L(S}).

In this chapter, we present performance results obtained for the Wiener process
next in Section 9.1. We follow with similar results obtained for an image sequence in
Section 9.2. We conclude this chapter with a summary of these experimental results

in Section 9.3.

9.1 Results for the Wiener Process

In this section, we evaluate the rate-distortion performance of various AV(Q algo-
rithms on the Wiener process, one of the few nonstationary sources with a known
rate-distortion function. In Section 4.5.2, we presented an expression for that rate-
distortion function; in this section, we compare the performance of AVQ algorithms
to this theoretically optimal performance.

In this section, we consider a Wiener process with variance o2 = 1. All results
are averaged over 5 trials; i.e., we use a testing data set consisting of five different
instances of the Wiener process. Each instance is 80,000 samples long. We use a sixth
instance of the Wiener process to train initial local codebooks using the generalized
Lloyd algorithm. This same training instance is used to train an initial local codebook
for each combination of vector dimension and codebook size under consideration.

For each algorithm, we use a codebook coder with a uniform scalar quantizer
of 512 levels; i.e., for each vector transmitted as side information, we send 9 bits
per vector component. In Section 9.1.1, we present extensive results for our GTR
algorithm. Then, in Section 9.1.2, we compare these results to those of other AVQ

algorithms.
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9.1.1 Results for the GTR Algorithm

In this section, we present the performance results obtained for the GTR algorithm
for the coding of the Wiener-process data. Initially, we consider only the move-to-
front variant of the GTR algorithm, and we fix the windowing parameter w at 100;
we consider both the basic algorithm and other values of w later. Using the testing
data set, we evaluate the operational rate and distortion of the GTR algorithm for
a variety of different rate-distortion parameters, A\. We generate these A\ values via a
geometric sequence.

In Figure 9.1, we show the rate-distortion performance for the GTR algorithm for
a fixed vector dimension and various local-codebook sizes. We see from this figure
that increasing the codebook size yields performance closer to the theoretical rate-
distortion curve, particularly in the low-rate, low-distortion area of the curve (the
so-called “knee” of the curve). However, the fact that the 128- and 256-codeword
curves are coincident suggests that there is a limit to the increase in performance
obtainable by increasing the codebook size. As it seems that, from Figure 9.1, a local
codebook of 256 codewords is sufficiently large, we use this codebook size for the
remaining results of this section.

In Figure 9.2, we plot the rate-distortion performance for the GTR algorithm for
a fixed local-codebook size and various vector dimensions. From rate-distortion the-
ory, we would expect that increasing the vector dimension would yield performance
increasingly close to the rate-distortion function. However, for practical implementa-
tions of AVQ), such as the GTR algorithm, the burden in rate due to side information
varies with vector dimension. As illustrated in Figure 9.2, when the distortion is

high, increasing the vector dimension yields performance increasingly close to the
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Figure 9.1: Rate-distortion performance of the GTR algorithm on the Wiener process
using 16-dimensional vectors and various local-codebook sizes. Each curve is gener-
ated from left to right using an increasing, geometric sequence of A values. For each
curve, w = 100.
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Figure 9.2: Rate-distortion performance of the GTR algorithm on the Wiener pro-
cess using a local codebook of 256 codewords and various vector dimensions. As in
Figure 9.1, each curve is generated from left to right with an increasing, geometric
sequence of A values. For each curve, w = 100.
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Figure 9.3: Side information for the GTR algorithm using various codeword dimensions. For each vector dimension, we
use a local codebook of 256 codewords and a windowing parameter of w = 100. (a) The amount of side information is
expressed as a percentage of the total rate reported in Figure 9.2. (b) The frequency of codebook updates expressed as a

percentage of the number of vectors coded.



theoretical rate-distortion curve as expected. However, we see from the same figure
that, when the distortion is low, the opposite is true; that is, using smaller vector
dimensions yields performance closer to the rate-distortion curve. This effect is ex-
plained in Figure 9.3. Figure 9.3a plots the amount of side information as a percentage
of the total rate for the corresponding data in Figure 9.2. In Figure 9.3b, the fre-
quency of codebook updates is plotted as a percentage of the number of vectors coded.
From Figure 9.3b, we see that an increasing number of codebook updates are needed
to achieve a lower distortion for each vector dimension considered. However, when
the vector dimension is small, each codeword update needs fewer bits. Therefore,
for low distortion levels, the side information accounts for less of the total rate when
the vector dimension is small than when the vector dimension is large, as verified in
Figure 9.3a. The algorithm consequently achieves better rate-distortion performance
at low distortion levels with smaller vector dimensions.

The results for the GTR algorithm to this point have all used a windowing pa-
rameter w = 100. Figure 9.4 presents the rate-distortion performance curves for the
algorithm using various values of w. We conclude from Figure 9.4 that the window-
ing parameter has little effect on the rate-distortion performance of the algorithm.
In Figure 9.5, we compare the basic GTR algorithm to the move-to-front variant.
We see that the move-to-front variant has a slight performance advantage, especially
when the distortion is low. We now continue to the next section which includes a
comparison of the performance of the GTR algorithm as reported in this section to

that of other AVQ algorithms.
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Figure 9.4: Rate-distortion performance of the GTR algorithm on the Wiener process
using a local-codebook size of 256, a vector dimension of 16, and various values of the
windowing parameter, w.
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Figure 9.5: Comparison of the basic and move-to-front variants of the GTR algorithm.
Results are run for the Wiener process using 16-dimensional vectors, a local-codebook
size of 256 codewords, and a windowing parameter w = 100.
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9.1.2 Comparisons to Previous AVQ Algorithms

In this section, we compare the rate-distortion performance of the GTR algorithm
to that of other AVQ algorithms. To facilitate the discussion, we present only the
results obtained for a local codebook of 256 vectors although similar results have been
observed for different local-codebook sizes. In Figure 9.2, we presented results for the
GTR algorithm using a local-codebook size of 256 codewords and various vector
dimensions; we now give corresponding results for each of the other AVQ algorithms
under consideration. At the end of this section, we compare these results to those of
the GTR algorithm.

In Figure 9.6, we show the rate-distortion performance for the Paul algorithm on
the Wiener-process testing data set for a variety of vector dimensions. We use the
move-to-front variant of the algorithm. Note that, like the GTR algorithm, the Paul
algorithm also achieves better rate-distortion performance at low distortion when the
vector dimension is small.

The rate-distortion performance of the Gersho-Yano algorithm on the same testing
data is given in Figure 9.7. We use the basic algorithm as described in Section 7.2.4.
The size of the adaption interval, 7, used by the algorithm dictates the operating
point on the rate-distortion curve; we create the plots in Figure 9.7 by varying 7 on
the order of 1 to 1,000 vectors.

Similar results are shown in Figure 9.8 for the Lancini-Perego-Tubaro algorithm.
The competitive-learning network used by the algorithm trains a new codebook of
size K7 = 8 codewords of which Kz = 2 are chosen to add to the local codebook.

The learning rule of the competitive-learning network is

c;i=ci+e-e T X ¢, (9.1)
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Figure 9.6: Rate-distortion performance of the move-to-front Paul algorithm on the
Wiener process using a local codebook of 256 codewords and various vector dimen-
sions. Each curve is drawn from the left to the right by increasing the distortion-
threshold parameter to the algorithm, D .
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Figure 9.7: Rate-distortion performance of the Gersho-Yano algorithm on the Wiener
process using a local codebook of 256 codewords and various vector dimensions. Each
curve is drawn from the left to the right by increasing the adaption interval, 7, used
by the algorithm.
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Figure 9.8: Rate-distortion performance of the Lancini-Perego-Tubaro algorithm on
the Wiener process using a local codebook of 256 codewords and various vector di-
mensions. Each curve is drawn from the left to the right by increasing the adaption
interval, 7, used by the algorithm.
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where u; is a counter of the number of times c; has won the competition. We choose
€ = 0.02 and T = 100. We trace out the rate-distortion performance curves in
Figure 9.8 by varying the adaption interval 7 from 10 to 1,000 vectors.

Figure 9.9 depicts the Wiener-process results for the Wang-Shende-Sayood algo-
rithm. For these results, we use the Dy lattice as the universal codebook, where
N is the vector dimension. As discussed by Conway and Sloane [57], of the root
lattices in 4-dimensional space, the D, lattice features the smallest second moment,
a quantity related to the expected distortion of the lattice (see, for example, [29]).
However, for higher dimensions, other lattices perform better than the Dy lattice [57].
For this reason, the Wang-Shende-Sayood algorithm using the Dy lattice suffers in
rate-distortion performance relative to other AVQ algorithms for dimensions N > 4,
although it is competitive for N = 4.

The results for the Goldberg-Sun algorithm are shown in Figure 9.10. A replen-
ishment threshold of § = 0.001 was used for each plot. As can be seen from the figure,
the Goldberg-Sun algorithm is heavily burdened with side information, resulting in a
rate-distortion performance much worse than that of the other algorithms considered
thus far. Although we do not present them here, results for several other values of §
were calculated. While higher values of § were successful in reducing the amount of
side information to levels more comparable to those of other algorithms, the result-
ing distortion for these large § values was much higher than that of the other AVQ
algorithms.

We note that we do not present Wiener-process results for either the Lightstone-
Mitra or gain-adaption AVQ algorithms. The Lightstone-Mitra algorithm had a severe

problem with “dormant” codewords. This effect, discussed in Section 7.3, results from
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Figure 9.9: Rate-distortion performance of the Wang-Shende-Sayood algorithm on
the Wiener process using a local codebook of 256 codewords and various vector di-
mensions. The Dy lattice is used for the universal codebook. Each curve is plotted
from left to right by increasing the distortion threshold, Dy, ..
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Figure 9.10: Rate-distortion performance of the Goldberg-Sun algorithm on the
Wiener process using a local codebook of 256 codewords and various vector dimen-
sions. A replenishment threshold of § = 0.001 was used, and the adaption interval,
T, was increased to trace out each curve from the left to the right.
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the reduction of the size of the training codebook by each ECVQ training iteration.
For the Wiener process, the training codebook size quickly reduced to one codeword,
essentially rendering the Lightstone-Mitra algorithm equivalent to nonadaptive VQ
with a higher rate due to nonzero side information. For this reason, the Lightstone-
Mitra algorithm is not competitive with the other AVQ algorithms on the Wiener-
process data and so is not considered further in this section. Additionally, we do not
present any results for the gain-adaption algorithm. The gain-adaption algorithm
requires, in practice, a much different codebook-design paradigm (see [2]) than that
of the other AVQ algorithms under consideration here. This design procedure involves
the training of a “gain-normalized” V(Q codebook and the establishment of a suitable
gain-estimation mechanism. As the performance of the gain-adaption algorithm is
highly dependent on these design procedures [2], it is difficult to make a meaningful
comparison to the other AVQ algorithms which all use the same initial codebook
generated by the generalized Lloyd algorithm. Thus, we do not consider the gain-
adaption algorithm further here.

To facilitate the comparison of the performances of the AV(Q algorithms, we replot,
in Figures 9.11 through 9.13, the results of this section (Figures 9.6 through 9.9),
combined with the corresponding results from the last section for the GTR algorithm
(Figure 9.2), using a separate figure for each value of vector dimension. We see from
Figures 9.11 through 9.13 that the GTR and Paul algorithms perform consistently
better than any other AV(Q algorithm. Additionally, the performance of the GTR
algorithm is always at least as good as that of the Paul algorithm. In most cases,
the GTR algorithm is closer to the theoretical rate-distortion curve than the Paul

algorithm for low-rate, high-distortion coding, while the algorithms have equivalent
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Figure 9.11: Rate-distortion performance of various AV(Q algorithms on the Wiener
process with 4-dimensional vectors
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Figure 9.12: Rate-distortion performance of various AV(Q algorithms on the Wiener
process with 16-dimensional vectors
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Dimension || Rate (bits/sample) | Distortion (MSE)
4 1.275 345.0
16 0.419 316.0
32 0.133 439.0

Figure 9.14: Rate-distortion performance for nonadaptive VQ on the Wiener process
using a VQ codebook of 256 codewords and various vector dimensions. The VQ
codebook is the initial codebook used by the AVQ algorithms.

performance for high-rate, low-distortion coding. We will further elaborate on the
coding performance of each AV(QQ algorithm in these different regions of the rate-
distortion plane in Section 9.3.

Finally, in Figure 9.14, we present the rate and distortion obtained for nonadaptive
VQ of the Wiener-process data. For the nonadaptive VQ codebook, we use the
initial codebook that we trained for the AV(Q algorithms using the generalized Lloyd
algorithm. The rate reported for the nonadaptive vector quantizer is the measured
first-order entropy of the VQ indices. We see that the nonadaptive vector quantizer
results in a much higher distortion when compared at the same rate to the AVQ
algorithms.

These observations conclude our consideration of the Wiener process. We now
continue the discussion in the next section by examining the performance of the AVQ

algorithms for an image sequence.

9.2 Image-Sequence Results

In this section, we consider the results obtained for the AVQ of the image sequence

shown in Figure 9.15. This sequence, which we will use as a testing data set, consists
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Figure 9.15: Original image sequence
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Figure 9.16: Training image used to generate initial local codebooks

of 8 image frames, 4 frames from the image sequence “Miss America” followed by 4
frames from the “Garden” sequence. Each image of the sequence is grayscale with
256 levels and has a resolution of 352 x 240 pixels. We use an additional frame,
shown in Figure 9.16, from the “Miss America” sequence as a training data set. The
generalized Lloyd algorithm is run on this training data to produce an initial local
codebook for each vector dimension and codebook size under consideration. For each
AVQ algorithm under consideration, we will use a codebook coder that transmits 8
bits per vector component for side information.

In the next section, we investigate the performance of the GTR algorithm on the
image sequence of Figure 9.15. Then, in Section 9.2.2, we make some comparisons

between the performance of the GTR algorithm and that of other AV(Q algorithms.
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9.2.1 Results for the GTR Algorithm

In Figure 9.17, we plot the rate-distortion performance of nonadaptive VQ versus
that of the GTR algorithm for the image sequence using a local-codebook size of
256 codewords and 4-dimensional vectors. For the nonadaptive-VQ result, the VQ
codebook used over the entire image sequence is the same initial local codebook
given to the GTR algorithm, and the rate is the first-order entropy of the VQ indices.
For the GTR algorithm, we vary the rate-distortion parameter A to obtain the rate-
distortion performance curve for the algorithm. In Figures 9.18 and 9.19, we show
quantized image sequences produced by the GTR algorithm and nonadaptive VQ,
respectively. To allow for a fair, albeit subjective, comparison of the perceptual
image quality of each quantized sequence, we set A = 16 to produce Figure 9.18;
consequently, the GTR algorithm operates at approximately the same rate as the
nonadaptive vector quantizer.

We see from Figure 9.17 that the GTR algorithm features much better rate-
distortion performance than nonadaptive V(@ when the performance over the entire
process is considered. However, when we visually compare the image quality at equal
rates by examining Figures 9.18 and 9.19, we observe that nonadaptive VQ performs
slightly better on the first 4 frames of the sequence, while the GTR algorithm is sub-
stantially better on the last 4 frames of the sequence. This subjective observation is
quantitatively verified in Figure 9.20 where we plot the average distortion and rate
obtained for each frame. Since the nonadaptive vector quantizer is using a codebook
trained on data very similar to that of the first 4 frames of the sequence, its per-
formance is quite good on those early frames. However, since the nonadaptive-VQ

codebook has very few codewords that are suited for coding the latter frames of the
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Figure 9.17: The GTR algorithm versus nonadaptive V() for the image sequence using
4-dimensional vectors and a local codebook of 256 codewords. The GTR algorithm

operates at approximately the same rate as the nonadaptive vector quantizer when
A = 16.
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Figure 9.18: Quantized image sequence for the GTR algorithm for 4-dimensional
vectors and a local codebook of 256 codewords (A = 16, MSE = 38.6, rate = 1.522
bits/pixel).
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Frame-1 Frame-2

Figure 9.19: Quantized image sequence for nonadaptive VQ for 4-dimensional vectors
and a VQ codebook of 256 codewords (MSE = 234.9, rate = 1.487 bits/pixel).
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sequence, poor distortion performance is observed for the nonadaptive vector quan-
tizer on these latter frames. On the other hand, the adaptive nature of the GTR
algorithm allows it to increase the rate on the latter frames in order to maintain
roughly even distortion performance over the entire sequence. Additionally, we ob-
serve that the GTR algorithm preserves edges and other areas of high detail much
better than nonadaptive VQ, as it is these areas that are likely to induce a codebook
update within the GTR algorithm. Since these areas, which compose a majority
of the regions in the latter frames of the sequence, are crucial to perceptual image
quality, not only does the GTR algorithm have a much better empirically measured
average distortion, it also achieves better subjective performance on the latter frames
of the sequence when compared to the nonadaptive vector quantizer operating at the
same rate.

For completeness, in Figures 9.21 through 9.24, we present for a vector dimension
of 16 the same results that have been given thus far for a vector dimension of 4. To
allow a subjective comparison of image quality at equal rates, we use a rate-distortion
parameter of A = 209 in the GTR algorithm to produce the quantized image sequence
depicted in Figure 9.22. We see in Figure 9.21 that the rate-distortion performance
of nonadaptive VQ is closer to that of the GTR algorithm for this vector dimension.
However, Figure 9.23 indicates that the nonadaptive vector quantizer operates at a
distortion unacceptably high for most applications in this case.

In the next section, we continue the discussion of image-coding results by com-

paring the performances of other AVQ algorithms to that of the GTR algorithm.
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Figure 9.21: The GTR algorithm versus nonadaptive VQ for the image sequence using
16-dimensional vectors and a local codebook of 256 codewords. The GTR algorithm
operates at approximately the same rate as the nonadaptive vector quantizer when

A = 209.
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Frame-1

Figure 9.22: Quantized image sequence for the GTR algorithm for 16-dimensional
vectors and a local codebook of 256 codewords (A = 209, MSE = 379.5, rate = 0.271
bits/pixel).
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Frama-1 Frame-2

Figure 9.23: Quantized image sequence for nonadaptive VQ for 16-dimensional vectors
and a VQ codebook of 256 codewords (MSE = 502.1 , rate = 0.322 bits/pixel).
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9.2.2 Comparisons to Previous AVQ Algorithms

In this section, we use the image sequence of Figure 9.15 to compare the relative
performances of AV(Q algorithms in image-coding applications. The rate-distortion
performance curves for various AVQ algorithms for 4-dimensional vectors and a local
codebook of 256 codewords are plotted in Figure 9.25. The Goldberg-Sun algorithm
used a replenishment threshold of § = 0.0001; all other constant parameters to the
algorithms were the same as those used in Section 9.1.2. Again, we do not present
results for the Lightstone-Mitra algorithm as it was as hindered by dormant codewords
for the image data as it was for the Wiener process. Neither do we consider the gain-
adaption algorithm in this section because of its design process being substantially
different than that of the other AVQ algorithms, as discussed in Section 9.1.2.

For the constrained-rate AV(Q algorithms, namely the the Gersho-Yano, Goldberg-
Sun, and Lancini-Perego-Tubaro algorithms, the adaption interval was increased to
a maximum value of 7 = 2112 vectors (i.e., one image frame) to trace out the rate-
distortion curve. This value of 7 was chosen to be the maximum allowed adaption-
interval size since, due to buffering limitations occurring in real implementations of
image coding, one image frame would normally be the maximum amount of data to
which an algorithm could have access at any given time. The lowest rate obtained
for these algorithms occurred at this maximum 7 value. Note that for each of the
constrained-rate algorithms, the rate-distortion curve has more or less a vertical slope.
This effect occurs due to the fact that the constrained-rate algorithms concentrate on
reducing distortion without considering the corresponding increase in rate. We see in
Figure 9.25 that, for the constrained-rate algorithms considered here, a substantial

cost in rate is incurred for any significant reduction in distortion.
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Figure 9.25: The rate-distortion performance of various AVQ algorithms for the image
sequence using 4-dimensional vectors and a local codebook of 256 codewords. The
circled “X” represents the operation point of the nonadaptive vector quantizer for
the same data.
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The constrained-distortion algorithms, namely the Paul and Wang-Shende-Sayood
algorithms, and the sole rate-distortion-based algorithm considered, namely the GTR
algorithm, fair substantially better than the constrained-distortion algorithms. We
see from Figure 9.25, that each of the Paul, Wang-Shende-Sayood, and GTR al-
gorithms feature nearly equivalent rate-distortion performance for most of the low-
distortion, high-rate region of the rate-distortion plane. However, as the distortion
gets larger, the rate associated with the constrained-distortion algorithms first de-
creases, and then start to grow. In fact, as their distortion thresholds go to in-
finity, both the Wang-Shende-Sayood and Paul algorithms would converge to the
nonadaptive vector quantizer were it not for the move-to-front index coder and the
codebook-update flags associated with the algorithms. It seems that efficiency of the
move-to-front index coder decreases as the codebook updates become fewer, even-
tually resulting in rate-distortion performance at a point equal in distortion to that
of the nonadaptive vector quantizer but at a slightly higher rate. On the other
hand, the GTR algorithm allows the rate to continually decrease as the distortion
increases. In fact, for A = 0o, the performance of the GTR algorithm converges to a
rate of 1/N bits/sample, where N is the vector dimension, and a distortion equal to
the average power of the original source. Consequently, the GTR algorithm features
rate-distortion performance superior to that of the other AVQ algorithms for low-rate
image coding.

For high-rate coding (a rate of 1.5 bits/pixel or greater), most of the AVQ algo-
rithms have distortion performance significantly better than that of nonadaptive VQ.
For example, at a rate equal to that of the nonadaptive vector quantizer (about 1.5

bits/pixel), most of the AVQ algorithms achieve an MSE of around 50, which results
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in very little visual distinction between their quantized images. However, the AVQ
algorithms achieve substantially less distortion than nonadaptive VQ at this rate.

More distinction between the AV(Q) algorithms is observed for low-rate coding.
Particularly, the constrained-rate algorithms were unable to achieve rates below about
1.5 bits/pixel. Of those algorithms that were able to produce a coding at a rate below
1.25 bits/pixel, only the GTR algorithm was able to maintain a monotonic decrease
in rate for increasing distortion. As a consequence, GTR was the only algorithm to
achieve a coding at a rate less than 1.0 bits/pixel.

In this section, we have presented experimental results for the AVQ of an image
sequence. We have noted that the performance of each AVQ algorithm relative to
the others varies depending upon which region of the rate-distortion plane we focus
our attention. In the next section, we conclude the current chapter by summarizing
the performance observed for the algorithms in certain regions of the rate-distortion

plane.

9.3 Summary of Experimental Results

In the experimental results presented in Sections 9.1 and 9.2, the rate-distortion
performance of various AVQ algorithms was evaluated for two types of data, an
artificial nonstationary process and real image-sequence data. In each case, varying
algorithm parameters produced a spectrum of rate-distortion performance pairs for
each algorithm. In this section, we identify two regions of the rate-distortion plane
as being especially important in practical coding applications and summarize the

performance observed for the algorithms in these regions.
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The two regions of the rate-distortion plane that are of particular interest are the
low-rate (LR) region and the low-distortion (LD) region. The first of these regions
corresponds to performance yielding a compact representation of the source using
few bits. The natural tradeoff between rate and distortion usually implies a high
distortion for this region. In data-compression terminology, the LR region corresponds
to algorithm performance with a high compression ratio. LR-region performance is
of importance in applications whose available rate, or, in information-theory terms,
whose channel capacity, is severely limited. As many practical applications, such as
network and wireless communications, fall into this category, LR performance is of
particular interest in current research.

The second region of interest is the LD region which corresponds to performance
yielding a high fidelity between the coded output and the original source. Generally,
performance in this region will require a high rate. Although the LR performance of
an algorithm is usually considered more important, LD performance is of interest in
certain scientific applications that perform measurements and calculations on coded
data and, consequently, need to maintain the integrity of the original data source.

In this section, we compare the LR and LD performances observed previously for
various AV(Q algorithms. As representative of the results of this chapter, we choose
Figure 9.11, which plotted the rate-distortion curves of various AVQ algorithms for
the Wiener process using a vector dimension of 4 and a local-codebook size of 256
codewords. Figure 9.26 repeats Figure 9.11 with the LR and LD regions explicitly
labeled. In Figure 9.26, we identify, somewhat subjectively, the LR region as the

lower portion of the plot where the rate-distortion curves are more or less horizontal,
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256 codewords.
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i.e., the lower half plane where the rate is less than 2.0 bits/sample. Similarly, we
identify the LD region as the portion of the plot where the rate-distortion curves are
roughly vertical, i.e., the left half plane where the MSE is less than 5.

Figure 9.27 summarizes the LR and LD performance associated with each of the
AVQ algorithms. To determine LR performance, we select a value of distortion for
which all the rate-distortion curves lie in the LR region in Figure 9.26. We then mea-
sure the rate of each algorithm for that value of distortion and plot it in Figure 9.27
as the measure of LR performance. Similarly for LD performance, we choose a rate
for which the rate-distortion curves all lie in the LD region and then measure the
distortion for each algorithm for that rate.

On examining Figure 9.27, we see that GTR achieves the best performance of all
the AVQ algorithms in both the LR and LD regions. In fact, in the LR region the GTR
algorithm achieves performance almost 50% better than the next best algorithms (the
Paul and Wang-Shende-Sayood algorithms). In the LD region, the GTR algorithm
achieves performance nearly equivalent to that of the Paul and Wang-Shende-Sayood
algorithms but substantially better than that of the other two algorithms. Although
Figure 9.27 was created from only one set of experimental results, performance plots
similar to Figure 9.27 corresponding to the remaining results (Figures 9.12, 9.13, and
9.25) would yield similar conclusions.

The cost associated with the superior LR and LD performance of the GTR algo-
rithm is a relatively slower execution speed than that of the other AVQ algorithms. A
measure of execution times of the AVQ algorithms is included in Figure 9.27. These
times are presented as ratios to the execution time of nonadaptive VQ on the same

data. These execution-time figures are intended to give only a rough estimate of
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time for nonadaptive V(Q; the parameters of each algorithm were adjusted so to yield performance on the “knee” of the
corresponding rate-distortion curve in Figure 9.26. Better performance is indicated by smaller bars for all three plots.



the relative speed of the algorithms as they will vary somewhat for different local-
codebook sizes, vector dimensions, and algorithm parameters. Additionally, these
times were obtained for the algorithm implementations given in Appendix B, which
have not been optimized for execution speed.

The execution-time results presented in Figure 9.27 indicate that nonadaptive VQ
is just over twice as fast as the GTR algorithm. The other AV(Q algorithms, with the
exception of the Gersho-Yano algorithm, require only about one third more execution
time than the nonadaptive vector quantizer, and consequently are somewhat faster
than the GTR algorithm. The GTR algorithm is slower than the Paul algorithm,
which has a similar structure, due to the recalculation of codeword probabilities and
codeword lengths which are done for every source vector.

Before leaving this chapter, we make an observation in relation to the AVQ-
communication-system model described in Chapter 6. The results of this chapter
have been obtained for a codebook coder implemented by a uniform, high-resolution
scalar quantizer such that negligible codebook mismatch was observed. We argued in
Section 6.2.3 that this simple approach to codebook-coder design is sufficient when
the side information accounts for a small part of the total rate of the AVQ system.
Regarding Figure 9.3a, we see that, for the GTR algorithm with 4-dimensional vec-
tors, the side information accounts for about 5% of the total rate for most of the LR
region. Consequently, we argue that the use of our high-resolution scalar quantizer
is justified for LR region operation. However, as seen in Figure 9.3a, the percentage
of side information increases sharply with decreasing distortion in the LD region,
accounting for a sizeable portion of the total rate there. Consequently, when cir-

cumstances call for operation in the LD region, a more sophisticated approach to

187



the design of the codebook coder is warranted. In this case, we should account for
the tradeoff, in terms of rate-distortion performance, that exists between the vector
coder and the codebook coder. We hypothesize that this same observation could be
extended to algorithms other than GTR.

In summary, our results indicate that GTR is the best known AV(Q algorithm for
coding in the LR region. In addition, GTR is one of three algorithms that achieve
equivalently good coding in the LD region. This superior coding performance is
achieved with computational complexity somewhat higher than that of other AVQ
algorithms. Finally, the high-resolution scalar quantizer used as a codebook coder by
the AVQ algorithms is sufficient for operation in the LR region, but more sophisti-
cated design methods incorporating the rate-distortion tradeoff between the codebook
coder and the vector coder should be considered for possibly more efficient operation
in the LD region. These observations conclude our experimental evaluation of AVQ
algorithms. We now continue to Chapter 10, the final chapter of this text, to sum-

marize the discussion presented to this point and to make some concluding remarks.
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CHAPTER 10

CONCLUSION

In this dissertation, we have provided an extensive discussion of AV(Q, starting
with its theoretical underpinnings in information and rate-distortion theories, contin-
uing with the development of a general mathematical model of AV(Q communication
systems, and concluding with an extensive presentation of experimental results es-
tablishing the superiority of AVQ techniques over nonadaptive VQ. We included the
development of a new AVQ algorithm, GTR, which was shown to have rate-distortion
performance better than that of the other AVQ algorithms. We saw that the GTR
algorithm achieved particularly good performance for low-rate coding.

Of the contributions presented here, perhaps the most important is our model
of AVQ communication systems. This model allows not only the precise definition
of what we consider to be an AVQ algorithm, but also the classification of AVQ
algorithms according to the major components in their implementations. In the
creation of our taxonomy of AVQ algorithms, we endeavored to isolate the major
conceptual distinctions of each algorithm while removing ad hoc techniques in order
that our experiments evaluated the performance differences due to the theoretically

significant portions of each algorithm.
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We identified the codebook selector as the most important component of an AVQ
system. This component monitors the changing source statistics to select appropriate
local codebooks from a large universal codebook. As only the codewords in the
local codebook are used to code the source, the composition of the local codebook is
paramount to the performance of the algorithm. As a consequence, the design of the
codebook selector was central in the development of our AVQ taxonomy.

Our taxonomy identified three major categories of AVQ: constrained-distortion,
constrained-rate, and rate-distortion-based algorithms. Of the three, the first two
categories can be considered to be online adaptions of the two general types of source
coding originating in rate-distortion theory. The third category represents relatively
recent developments in AV(Q algorithms based on the philosophy that coding should
progress under the consideration of both rate and distortion simultaneously.

This third class of algorithms, rate-distortion-based AVQ), incorporates both the
rate and the distortion into a cost function. The minimization of this cost function
results in both quantities being considered in both the codebook selector and the
vector coder. Consequently, the codebook selector of a rate-distortion-based algo-
rithm weighs the potential for a reduction in distortion against the cost in rate for
each codeword update, while the vector coder selects the codeword “closest” in the
rate-distortion sense.

Our GTR algorithm belongs to this third category of AVQ algorithms. The rate-
distortion cost criteria associated with our GTR algorithm enables it to consistently
outperform algorithms of the other two categories of AVQ. Performance surpassing
that of the other AVQ algorithms was observed in experimental results reported for

both an artificial nonstationary process as well as for an image sequence.
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We observed that the performance of each AV(Q algorithm relative to the others
varied depending the particular region of the rate-distortion plane containing the cur-
rent operating point. Consequently, we identified two regions of the rate-distortion
plane, i.e., the low-rate (LR) and low-distortion (LD) regions, as being especially im-
portant in practical coding applications. Our results established that, in comparison
to other AVQ algorithms, GTR is particularly well suited to LR-coding applications.
The GTR algorithm was unrivaled in LR-region performance while its LD perfor-
mance equaled that attained by the best algorithms in that region.

The performance results reported here indicate that AV(QQ algorithms have signifi-
cant potential in source-coding applications. However, several issues remain open for
further investigation; we briefly mention a few of these as potential topics for further
research. First, all the AV(Q algorithms examined here require the specification of
one or more parameters before coding begins. However, little is known about how
one should should determine suitable values for these parameters for a given appli-
cation. Consequently, there would be considerable use for techniques that provide
online, dynamic estimations for “optimal” parameter values. For example, it would
be useful to have an online method of adjusting the rate-distortion parameter A of
the GTR algorithm so as to automatically choose a particular operating point, such
as operation in the LR region or on the knee of the rate-distortion curve, for example.

Secondly, it would be useful to have some measure of local stationarity since most
AVQ algorithms rely, to some degree, on an assumption of slowly varying source
statistics. An estimation of the length of time over which source statistics are ap-

proximately stationary would have utility in dynamic parameter-estimation methods
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as mentioned above. More immediately, it would serve as a good basis for the static
setting of the windowing parameter w in the GTR algorithm as well as the adaption
interval 7 of the constrained-rate AVQ algorithms.

Thirdly, we recommend a more thorough consideration of the tradeoff involved
between the codebook coder and the vector coder. As discussed in Section 9.3, the
high-resolution scalar quantizer that we used for the codebook coder of each AVQ
algorithm is sufficient for LR coding. However, because of the sizeable amount of side
information in the LD region, the investigation of other codebook coders is warranted
for systems designed to operate in this region.

Finally, throughout this dissertation the problem at hand was generally one of
statistical source coding. That is, given a random process as input, the goal of
our communication system was to produce an efficient coding in terms of rate and
distortion. However, what is known of real information sources is often more complex
than this simple probabilistic random-process model. We have neglected the issue of
source modeling here. Clearly, for the most efficient operation of a communication
system, the source model should exploit all information known about the source. For
example, most real sources can be considered to be low-pass in nature; that is, they are
mainly composed of low- rather than high-frequency signals. One common approach
to handling such sources is to embed a quantizer within a prediction loop. In the
case that the quantizer is scalar, this technique is differential pulse-code modulation
(DPCM) [65]; for nonadaptive vector quantizers, it has been called vector DPCM
[66] or differential VQ (DVQ) [67, 68]. The performance of these algorithms depend
on both the design of the predictor (source modeling) as well as the design of the

quantizer (source coding).
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To facilitate the design of communication systems, it is usually convenient to con-
sider source modeling as an issue separate from source coding. As stated before, this
dissertation has concentrated on source coding. The AVQ algorithms that we have
examined here are simply source-coding techniques that are not necessarily intended
to be stand-alone solutions in real applications. Indeed, we could combine them with
various source models; for image coding, such source modeling could consist of motion
compensation, transform coding, or DPCM-like predictions, for example. Although
it was not our focus in this dissertation, it would be of interest to evaluate the per-
formance of AV(QQ algorithms in conjunction with these and other source models that
are commonly used in practice.

Although we disregard the issue of source modeling, we believe that the perfor-
mance comparisons reported here are a significant advancement in the field as we know
of no prior literature that has attempted to establish the relative rate-distortion per-
formance capabilities of AVQ algorithms. Our results show that the GTR algorithm
consistently achieves low-rate-coding performance superior to that of other AVQ al-
gorithms. Since many applications of current interest, such as network and wireless
communications, have severe rate limitations, low-rate coding techniques will play a
vital role in the successful development of systems for such applications. Our GTR
algorithm will be instrumental in the incorporation of AV(Q) into practical, low-rate
coding techniques at the heart of future communication systems designed for these

demanding applications.
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APPENDIX A

THE CODEBOOK SELECTION PROCESS FOR
INFINITE UNIVERSAL CODEBOOKS

In Section 6.1.2, we defined the codebook-selection process, S;, for the cases of
a finite or countably infinite universal codebook, C*. In this appendix, we present a
definition of the same random process using measure theory. This definition is valid
for all universal codebooks, finite, countably infinite, or uncountably infinite. We
start by introducing some necessary concepts from measure theory.

The following definitions from measure theory are given by Berger (Chapter 7 of
[6]). Additionally, Halmos [5] provides an extensive discussion of measure theory. An
abstract alphabet, A, is a set of finitely, countably, or uncountably many elements.
A o-algebra, A, is a collection of subsets of A that is closed under complementation
and the formation of countable unions. A measurable space is the pair (4, A). A
probability space, (2, B, P), is a measurable space coupled with a probability measure,
P, which is a nonnegative, countably additive function defined on the sets of B with
P(Q)) = 1. We will define random variable X as a measurable function from 2 to A
and the probability distribution of X, px, as a probability measure defined on A such

that

194



px(Z) =PH{{we Q: X(w) € Z}), Ze A (A1)

That is, we can consider the probability space (2, B, P) as the “event space” that
drives the random variable X whose values are members of the set A.

Suppose that we have a universal codebook, C*, that is a finite, countably infinite,
or uncountably infinite set. Define A as the power set of C*; i.e., A is an abstract
alphabet that is the class of all subsets of C*. Let A be a o-algebra of subsets of
A. Then (A, A) form a measurable space. Suppose we have an event space driving

random variable S; i.e., (2, B, P) is a probability space,

S:Q— A (A.2)

and we define a probability measure pg on (A, .A) such that

ps(Z) = P({w e Q: S(w) € Z}), Z e A (A.3)

Let S; be a sequence of such random variables. S; forms a codebook-selection process
analogous to the one defined in Section 6.1.2. We note that we define the probability

distribution for S; in A.3 so that

ps,({Ct}) = prob{S; =Ci}, CieA, {G}eA (A.4)

for each time ¢.
The definition of Sy given in this appendix is valid for all types of universal code-
books, finite, countably infinite, or uncountably infinite. Consequently, we can assume

the existence of this codebook-selection process for all possible universal codebooks.
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APPENDIX B

SOURCE-CODE IMPLEMENTATIONS OF THE AVQ
ALGORITHMS

In the following sections, we present the implementations of various AVQ algo-
rithms used to run the results of Chapter 9. The implementations given here are in
MATLAB M-file code and have not been optimized for execution speed. In Section B.1,
we present some utility routines used by the algorithm implementations. Then, in

Sections B.2 through B.8, we present the algorithm implementations themselves.
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B.1 Source Code for Various Utility Routines

B.1.1 Competitive Learning

function [Y, D] = c1(X, K, epsilon, T, I, t, y)

0,

h

% [Y, D] = c1(X, K, epsilon, T, I, t, y)

)

% X: (k x N), training vectors (N column vectors of dimension k)
% K: codebook size (scalar)

% epsilon: learning rule constant (scalar)

% T: learning rule constant (scalar)

%I
% t: distortion threshold stopping criterion
% y: (k x K) initial codebook (optional)

0,

h

% Y: codebook (k x K)

: number of iterations to run (scalar)

% D: sequence of distortions (I x 1)

h

% Implements competitive learning. The learning rule is specified with
% epsilon and T:

% y =y + epsilon*exp(-u/T)*(x - y)

% where y is the winning codeword, x is the current input vector, and

% u is the number of times codeword y has been updated.

h

% Either I or t must be specified. If I is nonzero, then training stops
% after the specified number of iterations. If I is zero training stops
% when (D(i-1) - D(i))/D(i-1) is less than t, where D(i) is the average
% distortion for the codebook of iteration i. The sequence of

% distortion values obtained during training is returned in D (only

% if t rather than I is specified).

% k: vector dimension, N = # of training vectors
[k, N] = size(X);

if T ==
if exist(’t’) == 0
disp(’cl: I or t must be specified’)
return
end

end
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if exist(’y’) "= 0
Y=1y;
else
% Setup random initial codebook
ml = max(X(:));
m2 = min(X(:));
Y = rand(k, K)*(m1l - m2) + ones(k, K)*((m1 + m2)/2 - (0.5%x(m1-m2)));

end

% Normalize to unit cube

max (X(:));

X_min = min(X(:));

X2 = (X - X_min)./(X_max - X_min);
Y = (Y - X_min)./(X_max - X_min);

X_max

partition = zeros(1,N);

u = zeros(1, K);

if I =0
for iteration = 1:1
for n = 1:N

[distortion, partition] = vq(X2(:, n), Y);
Y(:, partition) = Y(:, partition) + ...
epsilon*exp(-u(partition)/T)*(X2(:, n) - Y(:, partition));
u(partition) = u(partition) + 1;
end
end
else
iteration = 1;

done = 0;

[distortion, partition] = vq(X2, Y);

D = mean(distortion);

if (D == 0)
done = 1;

end

while done "= 1

iteration = iteration + 1;
D = [D(:); 0];
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for n = 1:N
[distortion, partition] = vq(X2(:, n), Y);
Y(:, partition) = Y(:, partitiomn) + ...
epsilon*exp(-u(partition)/T)*(X2(:, n) - Y(:, partition));
u(partition) = u(partition) + 1;

end

[distortion, partition] = vq(X2, Y);

D(iteration) = mean(distortion);

if (D(iteratiomn) == 0)
done =1;

elseif (abs(D(iteration - 1) - D(iteration)))/D(iteration - 1) < t
done = 1;

end

end

end

h

Unnormalize codebook
= Y.*(X_max - X_min) + X_min;
= D.*x((X_max - X_min)."2);

B.1.2 ECVQ Encoder

function [Distortion, Partition] = ecvq(InputProcess, Codebook,

h
h
h
h
h
h
h
h
h
h
h
h
h

Probs, Lambda);
[Distortion, Partition] = ecvq(InputProcess, Codebook, Probs, Lambda)
InputProcess: (k x N), N k-dimensional vectors to be vector quantized
Codebook: (k x M), M k-dimensional vectors for codebook
Probs: (1 x M), codeword probabilities
Lambda: (scalar), rate-distortion parameter
Distortion: (1 x N), squared error for each input vector
Partition: (1 x N), the number of the partition to which each input

vector is assigned

Implements the ECVQ encoding algorithm, featuring a modified
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% nearest-neighbor rule.

h

% P. A. Chou, T. Lookabaugh, and R. M. Gray, "Entropy-Constrained Vector
% Quantization," IEEE Trans. Acoust. Speech and Sig. Proc., vol 37,

% mo. 1, Jan. 1989, pages 31-42.

[vector_dimension, num_input_vectors] = size(InputProcess);

codebook_size = size(Codebook, 2);

if (vector_dimension “= size(Codebook, 1))
disp(’ecvq: Codebook and InputProcess must have same codeword dimension’)
return

end

if (codebook_size “= size(Probs, 2))
disp(’ecvq: Codebook and Probs must indicate the same codebook size’)
return;

end

Partition = zeros(l, num_input_vectors);

Distortion = zeros(l, num_input_vectors);

% Calculate estimated variable-length codeword lengths for current
% probabilities

const = -1/log(2);

codewordlengths = zeros(1l, codebook_size);

P = Probs > 0;

codewordlengths (P) = const*log(Probs(P));

codewordlengths ("P) = Inf*ones(1,sum("P));

for current_vector = 1:num_input_vectors

% Get distortion btw each codeword and the current source vector

[distortion, dummy] = vq(Codebook, InputProcess(:, current_vector));

% Calculate cost function and choose the codeword with lowest cost
J = distortion + Lambda*codewordlengths;

[dummy, winner] = min(J);

Partition(current_vector) = winner(1);

Distortion(current_vector) = distortion(winner);
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end

B.1.3 ECVQ Training Algorithm

function [FinalCodebook, FinalProb, FinalPartition] = ecvq_train(InputData,

h
h
h
h
h
h
h
[/
h
h
h
[/
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

InitialCodebook, InitialProb, Lambda, Iterations, StoppingThreshold);

[FinalCodebook, FinalProb, FinalPartition] =
ecvg_train(InputData, InitialCodebook, InitialProb, Lambda,
Iterations, StoppingThreshold)

InputData: (k x N), input vector process of N k-dimensional vectors

InitialCodebook: (k x M)

InitialProb: (1 x M) initial codeword probabilities

Lambda: (scalar), algorithm parameter controlling the relative weighting
of the rate into the minimizing cost function

Iterations: (scalar)

StoppingThreshold: (scalar)

FinalCodebook: (k x M’)
FinalProb: (1 x M)

FinalPartition: (1 x N), final partitions for InputData

This subroutine implements the entropy-constrained vector

quantization (ECVQ) training algorithm of Chou, Lookabaugh, and Gray.

Either I or t must be specified. If I is nonzero, then training stops
after the specified number of iterations. If I is zero training stops
when (J(i - 1) - J(i))/J(i) is less than StoppingThreshold, where J(i)
is the cost function for iteration i.

Lambda controls the weighting of the rate in the cost function:

J = E[D + Lambda*R]. This cost function is minimized by the

algorithm.

Because the ECVQ training algorithm generally reduces the codebook
size during training, the FinalCodebook will generally be smaller than

the InitialCodebook, i.e., M’ will be less than M.
P. A. Chou, T. Lookabaugh, and R. M. Gray, "Entropy-Constrained Vector

Quantization," IEEE Trans. Acoust. Speech and Sig. Proc., vol 37,
no. 1, Jan. 1989, pages 31-42.
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h

if (Iterations == 0)
if (Texist(’StoppingThreshold’))
disp(’Either Iterations or StoppingThreshold must be specified’)
return
end

end

numvectors = size(InputData, 2);

[vector_dimension, codebook_size] = size(InitialCodebook);

codebook = InitialCodebook;

const = -1/1og(2);

codewordlengths = zeros(1l, codebook_size) ;

P = InitialProb > 0;

codewordlengths (P) = const*log(InitialProb(P));

% Use infinite codeword lengths for codewords with probability = 0

codewordlengths ("P) = Inf*ones(1l,sum("P));

if (Iterations ~= 0)

% Iteration-based training

for iteration = 1:Iterations

%Determine new partition
partition = zeros(1l, numvectors);
for vector = 1:numvectors
% Determine MSE for each partition, note seemingly inverse use of vq()
[distortion, dummy] = vq(codebook, InputData(:,vector));
if (Lambda "= 0)
cost = distortion + Lambda*codewordlengths;
else
cost = distortion;
end
[dummy, winner] = min(cost);
partition(vector) = winner(1);

end

cnt = zeros(1, codebook_size);
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keep = ones(1l, codebook_size);

% Update partition centroids
for codeword = 1:codebook_size
part = (partition == codeword);

cnt (codeword) = sum(part);

% Compute partition centroids
if (cnt(codeword) > 0)
if (cnt(codeword) == 1)

codebook (:,codeword) = InputData(:,part);

else

codebook (:,codeword) = mean(InputData(:,part).’).’;
end

else
% Remove codeword from codebook
keep(codeword) = 0;

end

end

% Remove unused codewords from codebook
codebook = codebook(:,keep);

cnt = cnt(keep);

codewordlengths = codewordlengths (keep) ;

codebook_size = sum(keep);

% Update codeword lengths

prob = cnt / size(partition, 2);

P = (prob > 0);

codewordlengths (P) = constxlog(prob(P));

% Use infinite codeword lengths for codewords with probability = 0

codewordlengths ("P) = Inf*ones(1,sum("P));
end
else
% Stopping-threshold-based training
iteration = 0;

done = 0;

previous_J = Inf;
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while (“done)

iteration = iteration + 1;

%Determine new partition
partition = zeros(l, numvectors);
for vector = 1:numvectors
% Determine MSE for each partition, note seemingly inverse use of vq()
[distortion, dummy] = vq(codebook, InputData(:,vector));
if (Lambda "= 0)
cost = distortion + Lambda*codewordlengths;
else
cost = distortion;
end
[dummy, winner] = min(cost);
partition(vector) = winner(1);

end

cnt = zeros(1, codebook_size);

keep = ones(1l, codebook_size);

% Update partition centroids
for codeword = 1:codebook_size
part = (partition == codeword) ;

cnt (codeword) = sum(part);

% Compute partition centroids
if (cnt(codeword) > 0)
if (cnt(codeword) == 1)
codebook (:,codeword) = InputData(:,part);
else
codebook (:,codeword) = mean(InputData(:,part).’).’;
end
else
keep(codeword) = 0;
end

end
% Remove unused codewords from codebook

codebook = codebook(:,keep);
cnt = cnt(keep);
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codewordlengths = codewordlengths (keep) ;

codebook_size = sum(keep);

% Update codeword lengths

prob = cnt / size(partition, 2);

P = (prob > 0);

codewordlengths (P) = constxlog(prob(P));

% Use infinite codeword lengths for codewords with probability = 0

codewordlengths ("P) = Inf*ones(1l,sum("P));

[D, dummy] = vq(InputData, codebook);
R = entropy(prob);

J = mean(D) + Lambdax*R;

if (J == 0)

done = 1;

else
if ((previous_J - J)/J < StoppingThreshold)
done = 1;
end
previous_J = J;
end
end

end

FinalCodebook = codebook;
FinalProb = prob;

FinalPartition = partition;

B.1.4 Entropy

function H = entropy(P);
h

% H = entropy(P)

h

%P: (1 xN)

h

% H: scalar

h

% Computes the entropy of the probability mass function given by
% P.

h
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P = P(P>0);
H = -sum(P.*1log(P));
H = H./log(2);

B.1.5 The Generalized Lloyd Algorithm

function [Y, D] = 1bg(X, K, I, t, y);

%

% [Y, D] = 1bg(X, K, I, t, y)

%

% X: (k x N), training vectors (N column vectors of dimension k)
% K: codebook size (scalar)

% I: number of iterations to run (scalar)

% t: distortion threshold stopping criterion
% y: (k x K) initial codebook (optional)

%

% Y: codebook (k x K)

% D: sequence of distortions (I x 1)

%

% This subroutine implements the LBG algorithm (generalized

% Lloyd algorithm) for VQ design as described in

% Gersho and Gray, Vector Quantization and Signal Compression.

% Kluwer Academic Publishers, 1992.

% If no initial codebook is specified, the initial codebook

% is randomly generated.

h

% Either I or t must be specified. If I is nonzero, then training stops
% after the specified number of iterations. If I is zero training stops
% when (D(i-1) - D(i))/D(i-1) is less than t, where D(i) is the average
% distortion for the codebook of iteration i. The sequence of

% distortion values obtained during training is return in D (only

% if t rather than I is specified).

% k: vector dimension, N = # of training vectors
[k, N] = size(X);

if T ==
if exist(’t?) ==
disp(’lbg: I or t must be specified’)

return
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end

end

if exist(’y’) "= 0
Y=1y;
else
% Setup random initial codebook
ml = max(X(:));
m2 = min(X(:));
Y = rand(k, K)*(m1 - m2) + ones(k, K)*((m1 + m2)/2 - (0.5*%(m1-m2)));

end

partition = zeros(1,N);

ifI™=0

for iteration = 1:1,

old_ Y = Y;

[distortion, partition] = vq(X, Y);

for i = 1:K,
part = (partition == i);
if (part == 0)
% random codeword from training set if empty cell
Y(:, 1) = X(:,floor(rand(1)*(N-1)) + 1);
else
if (sum(part) <= 1)
Y(:, 1) = X(:,part);
else
Y(:, i) = mean(X(:,part).’).’;
end
end

end
end
else
iteration = 1;

done = 0;
D = 0;
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[distortion, partition] = vq(X, Y);

D = mean(distortion);
while done "= 1

iteration = iteration+1;
D = [D(:); 0];

old Y = Y;
[distortion, partition] = vq(X, Y);

for i = 1:K,
part = (partition == i);
if (part == 0)
% random codeword from training set if empty cell
Y(:, i) = X(:,floor(rand(1)*(N-1)) + 1);
else
if (sum(part) <= 1)
Y(:, 1) = X(:,part);
else
Y(:, i) = mean(X(:,part).’).’;
end
end

end

[distortion, partition] = vq(X, Y);

D(iteration) = mean(distortion);

change = (D(iteration-1) - D(iteration))/D(iteration-1);
if ((change >= 0) & (change < t))
return
end
end

end

B.1.6 The D, Lattice Quantizer

function Y = lattice_dn(X)
%
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h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

Y

X:

Y:

lattice_dn(X)

(n x N)

(n x N)

Calculates the Dn lattice quantization of each n-dimensional input

vector given in X.

J. H. Conway and N. J. A. Sloane, "Voronoi Regions of Lattices, Second

Moments of Polytopes, and Quantization", IEEE Trans. Info. Theory, vol. 28,
. 2, March 1982, pp. 211-226.

J. H. Conway and N. J. A. Sloane, "Fast Quantizing and Decoding Algorithms

for Lattice Quantizers and Codes", IEEE Trans. Info. Theory, vol. 28,
. 2, March 1982, pp. 227-232.

vector_dimension = size(X,1);

if (vector_dimension < 4)

disp(’lattice_dn: X must be at least 4-dimensional vectors’);

return

end

h

size(X, 2);

zeros (vector_dimension, N);

Round to nearest integer (except for m + 0.5 should round down to m)

part = (abs(X - fix(X)) == 0.5);

f("part)

= round (X(“part));

f(part) = fix(X(part));

W

abs(f - X);

[dummy, i] = max(w);

g =1
for n

select

1:N

g(i(n), n) = round(X(i(n), n) - 0.5*sign(f(i(n), n) - X(i(n), n)));

end

ones (vector_dimension, 1)*abs(rem(sum(f), 2));
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Y = ("select) .xf + (select).*g;

B.1.7 Partition Probabilities

function P = partitionprob(X, Y);

h

% P = partitionprob(X, Y)
h

% X: (k x N)

hY: (k x K)

h

% P: (1 xK

h

% Calculates the probabilities of each of the K VQ partitions

% of codebook Y based on the set of input values X.

h

[k, N] = size(X);

K = size(Y,2);
P = zeros(1, K);
for n = 1:N,

diff = X(:,n)*ones(1,K) - Y;
diag(diff.’ * diff);

[mindist,winner] = min(dist);

dist

P(winner) = P(winner)+1;

end

P = P/N;

B.1.8 VQ Encoder

function [Distortion, Partition] = vq(InputData, Codebook);

%

% [Distortion, Partition] = vq(InputData, Codebook)

%

% InputData: (k x N), N k-dimensional vectors to be vector quantized
% Codebook: (k x M), M k-dimensional vectors for codebook

%

% Distortion: (1 x N), squared error for each input vector
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% Partition: (1 x N), the number of the partition to which each input

% vector is assigned

h

[k, N] = size(InputData);
[k2, M] = size(Codebook) ;

if k "= k2
disp(’vq: Codebook and InputData must have same codeword dimension’)
return

end

Partition = zeros(1,N);
Distortion = zeros(1,N);
for n=1:N
diff = InputData(:,n)*ones(1,M) - Codebook;
if (M < 1024)
dist = diag(diff.’ * diff);
else
% Have to save space if codebook is large
dist = zeros(1, M);
for codeword = 1:M
dist(codeword) = diff(:,codeword).’ * diff(:,codeword);
end
end
[Distortion(n), winner] = min(dist);
Partition(n) = winner(1);

end
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B.2 The Paul Algorithm Source Code

function [Distortion, Rate, FinalCodebook, OutputProcess] = ...
paul82(InputProcess, DistThreshold, InitialCodebook, ComponentBits);

h

% [Distortion, Rate, FinalCodebook, OutputProcess] =

%  paul85(InputProcess, DistThreshold, InitialCodebook, ComponentBits)

h

% InputProcess: (k x N), input vector process of N k-dimensional vectors

% DistThreshold: (scalar), maximum allowable VQ distortion before

% adaption takes place

% IntialCodebook: (k x M)

% ComponentBits: (scalar), number of bits for each codeword vector

%  component used in calculating the side information rate

h

% Distortion: (1 x N), squared error for each input vector

% Rate: (scalar), average rate for encoding of process (bits per sample)

% FinalCodebook: (k x M), M k-dimensional vectors

% OutputProcess: (k x N), quantized output process

h

% Implements Paul’s 1982 algorithm for adaptive vector quantization. If the

% current input vector is greater than the specified DistThreshold,

% the current input vector is added to the codebook, replacing the

% o0ld codeword that was least-recently used.

h

% Least-recently-used algorithm is implemented as move-to-front reordering

% of the codebook and the VQ rate is calculated as the entropy of the

% resulting indices.

h

% D. B. Paul, "A 500-800 bps Adaptive Vector Quantization Vocoder Using a

% Perceptually Motivated Distance Measure", Conference Record, IEEE

% Globecom, pp. 1079-1082, 1982.

h

[vector_dimension, num_input_vectors] = size(InputProcess);
codebook_size = size(InitialCodebook, 2);

codebook = InitialCodebook;

index_length = log(codebook_size)/log(2);

Distortion = zeros(l, num_input_vectors);

Index = [];

OutputProcess = zeros(vector_dimension, num_input_vectors);
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total_replaced = 0;
for current_vector = 1:num_input_vectors
[distortion, partition] = vq(InputProcess(:,current_vector), codebook) ;

if (distortion > DistThreshold)
codebook = [ InputProcess(:,current_vector) ...
codebook(:,1: (codebook_size - 1)) 1;
% Rate equals a flag bit plus the entire new codeword
total_replaced = total_replaced + 1;
else
Distortion(current_vector) = distortion;
% Rate equals a flag bit plus the VQ index
Index = [Index partition];
% Move to front
codebook = codebook(:, [partition 1:(partition - 1) (partition + ...
1) : (codebook_size)]);
end

OutputProcess(:, current_vector) = codebook(:, 1);
end

prob = zeros(1l, codebook_size);

for codeword = 1:codebook_size
prob(codeword) = sum(Index == codeword);

end

prob = prob / size(Index, 2);

total_bits = total_replaced*(l + Vector_dimension*ComponentBits) + ...
(num_input_vectors - total_replaced)*(1 + entropy(prob));

Rate = total_bits/num_input_vectors/vector_dimension;

FinalCodebook = codebook;

B.3 The Wang-Shende-Sayood Algorithm Source Code

function [Distortion, Rate, FinalCodebook, OutputProcess] = ...
wss94 (InputProcess, DistortionThreshold, InitialCodebook, ComponentBits);
%
% [Distortion, Rate, FinalCodebook, OutputProcess] =
%  wss94(InputProcess, DistortionThreshold, InitialCodebook, ComponentBits)
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h
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h

h

InputProcess: (k x N), input vector process of N k-dimensional vectors

DistortionThreshold: (scalar), maximum allowable VQ distortion before
adaption takes place (squared error)

IntialCodebook: (k x M)

ComponentBits: (scalar), number of bits for each codeword vector

component used in calculating the side information rate

Distortion: (1 x N), squared error for each input vector
Rate: (scalar), average rate for encoding of process (bits per sample)
FinalCodebook: (k x M), M k-dimensional vectors

OutputProcess: (k x N), quantized output process

Implements Wang, Shende, and Sayood’s 1994 algorithm for AVQ. The
universal codebook is the Dn lattice, where n is the vector

dimension. The specified DistortionThreshold

gives the scaling of the lattice so that the maximum squared error of
any input vector is less than DistortionThreshold. If the closest
codeword to the current input vector is greater than DistortionThreshold,
the closest codeword on the Dn lattice is found and is added to the

codebook, replacing the least-recently used codeword.

Note: the vector dimension specified by InputProcess and

InitialCodebook must be at least 4.

Note: Implements the baseline version of the algorithm - the

scalar-quantized vector-component updating is not done.

X. Wang, S. Shende, K. Sayood, "Online Compression of Video Sequences
Using Adaptive VQ Codebooks," Proc. DCC, March 1994, pp. 185-194.

[vector_dimension, num_input_vectors] = size(InputProcess);

if (vector_dimension < 4)

disp(’wss94: vector dimension must be at least 47’);

return;

end

codebook_size = size(InitialCodebook, 2);

h

Normalize to Dn lattice which has maximum distance =
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% sqrt(vector_dimension/4)

covering_radius = sqrt(vector_dimension/4);

normalization = covering_radius/sqrt(DistortionThreshold);
codebook = InitialCodebook*normalization;

InputProcess = InputProcess*normalization;
log(codebook_size)/log(2);

Distortion = zeros(1l, num_input_vectors);

Index = [];

index_length

OutputProcess = zeros(vector_dimension, num_input_vectors);

total_vectors_replaced = 0O;

for current_vector = 1:num_input_vectors

[distortion, partition] = vq(InputProcess(:,current_vector), codebook);

if (distortion > covering_radius)
% There is a Dn lattice point that is closer
new_codeword = lattice_dn(InputProcess(:,current_vector));
codebook = [ new_codeword codebook(:,1:(codebook_size - 1)) 1;
% Rate equals a flag bit plus the entire new codeword
total_vectors_replaced = total_vectors_replaced + 1;
diff = InputProcess(:, current_vector) - new_codeword;
Distortion(current_vector) = diff.’ * diff;

else
Distortion(current_vector) = distortion;
% Rate equals a flag bit plus the VQ index
% Rate equals a flag bit plus the VQ index
Index = [Index partition];
% Move to front
codebook = codebook(:,[partition 1:(partition - 1) (partition +

1) : (codebook_size)]);
end
OutputProcess(:, current_vector) = codebook(:, 1);

end

prob = zeros(1l, codebook_size);
if (size(Index, 2) > 0)
for codeword = 1:codebook_size
prob(codeword) = sum(Index == codeword);
end

prob = prob / size(Index, 2);
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end

total_bits = total_vectors_replaced*(1 + ...
vector_dimension*ComponentBits) + (num_input_vectors -

total_vectors_replaced) *(1 + entropy(prob));
Rate = total_bits/num_input_vectors/vector_dimension;

FinalCodebook = codebook/normalization;

Distortion = Distortion/normalization/normalization;

B.4 The Gersho-Yano Algorithm Source Code

function [Distortion, Rate, FinalCodebook, OutputProcess] = ...

gy85(InputProcess, AdaptionInterval, InitialCodebook, ComponentBits);

0,

h

% [Distortion, Rate, FinalCodebook, OutputProcess] =

% gy85 (InputProcess, AdaptionInterval, InitialCodebook, ComponentBits)
0,

h

% InputProcess: (k x N), input vector process of N k-dimensional vectors
% AdaptionInterval: (scalar), number of vectors per adaption interval
% IntialCodebook: (k x M)

% ComponentBits: (scalar), number of bits for each codeword vector

%  component used in calculating the side information rate

h

% Distortion: (1 x N), squared error for each input vector

% Rate: (scalar), average rate for encoding of process (bits per sample)
% FinalCodebook: (k x M), M k-dimensional vectors

% OutputProcess: (k x N), quantized output process

h

% Implements Gersho and Yano’s 1985 simple algorithm. The partition with
% the greatest partial distortion is split. An LBG iteration is run to

.
% the split codeword; the other replaces the codeword with the smallest

refine the locations of the two new codewords. One codeword replaces

% partial distortion.

h

% A. Gersho and M. Yano, "Adaptive Vector Quantization by Progressive
%  Codevector Replacement," ICASSP 1985, 133-136.

h

[vector_dimension, num_input_vectors] = size(InputProcess);

codebook_size = size(InitialCodebook, 2);
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num_intervals = floor(num_input_vectors/AdaptionInterval);
codebook = InitialCodebook;

final_distortion = zeros(l, num_intervals*AdaptionInterval);
Index = zeros(l, num_intervals*AdaptionInterval);

OutputProcess = zeros(vector_dimension, num_input_vectors);

for current_interval = 1:num_intervals

X = InputProcess(:, ((current_interval - 1)*AdaptionInterval +

1) : (current_interval*AdaptionInterval));

[distortion, partition] = vq(X, codebook);
partitiondistortion = zeros(1,codebook_size);
partitionprob = zeros(1l,codebook_size);
for p = 1l:codebook_size
part = partition == p;
if sum(part) "= 0
partitiondistortion(p) = mean(distortion(part));
partitionprob(p) = sum(part)/AdaptionInterval;
end

end

partialdistortion = partitiondistortion .* partitionprob;
[a,b] = max(partialdistortion);

winner = b(1);

[a,b] = min(partialdistortion);

loser = b(1);

winners = (partition == winner);

if (any(winners))

signalpower = sqrt(max(diag(X(:, winners).’ * X(:, winners))));

split = zeros(vector_dimension, 2);

split(:,1) = codebook(:,winner) + randn(vector_dimension,
1)*0.0001*signalpower;

split(:,2) = codebook(:,winner) + randn(vector_dimension,
1)*0.0001*signalpower;

split2 = 1lbg(X(:, winners), 2, 1, 0, split);

codebook(:, winner) = split2(:, 1);

codebook(:, loser) = split2(:, 2);

[distortion, partition] = vq(X, codebook);
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end

final_distortion(((current_interval - 1)*AdaptionInterval + ...
1) : (current_interval*AdaptionInterval)) = distortion;
Index(((current_interval - 1)*AdaptionInterval + ...
1) : (current_interval*AdaptionInterval)) = partition;
OutputProcess(:, ((current_interval - 1)*AdaptionInterval + ...

1) : (current_interval*AdaptionInterval)) = codebook(:, partition);
end

Distortion = final_distortion;

FinalCodebook = codebook;
index_length = log(codebook_size)/log(2);

% Variable VQ rate

prob = zeros(1l, codebook_size);

if (size(Index, 2) > 0)
for codeword = 1:codebook_size

prob(codeword) = sum(Index == codeword);

end
prob = prob / size(Index, 2);

end

Rate_VQ = entropy(prob);

% Side information involves sending each vector component of the new codeword
% plus the index of its location in the codebook
Rate_Side = 2*(index_length + ComponentBits*vector_dimension)/AdaptionInterval;

Rate = (Rate_VQ + Rate_Side)/vector_dimension;

B.5 The Goldberg-Sun Algorithm Source Code

function [Distortion, Rate, FinalCodebook, OutputProcess] = ...
gs86 (InputProcess, Interval, InitialCodebook,
ReplenishmentThreshold, ComponentBits);

0,

h

% [Distortion, Rate, FinalCodebook, OutputProcess] =
% gs86 (InputProcess, Interval, InitialCodebook,
% ReplenishmentThreshold, ComponentBits)

0,

h
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% InputProcess: (k x N), input vector process of N k-dimensional vectors
% Interval: (scalar), number of vectors per adaption interval

% IntialCodebook: (k x M)

% ReplenishmentThreshold: (scalar), threshold at which

% new trained vectors are added to codebook (expressed as a fraction

% of the maximum vector squared magnitude (signal power)

% of the adaption interval)

% ComponentBits: (scalar), number of bits for each codeword vector

%  component used in calculating the side information rate

h

% Distortion: (1 x N), squared error for each input vector

% Rate: (scalar), average rate for encoding of process (bits per sample)

% FinalCodebook: (k x M), M k-dimensional vectors

% OutputProcess: (k x N), quantized output process

A

% Implements Goldberg & Sun’s 1986 AVQ algorithm. One iteration of LBG

% is run using vectors of the adaption interval. Codewords in the

% new codebook that have changed greater than the specified

% ReplenishmentThreshold replace their corresponding vectors in the

% old codebook.

h

% Note: this implementation is a forward-adaptive version of the algorithm
% "Codebook Replenishment by Mean Shift" as originally described by

[/

% interval takes place after the codebook is updated, rather than

Goldberg & Sun. That is, coding of the vectors of the adaption

% afterwards as originally described.

h

% M. Goldberg and H. Sun, "Image Sequence Coding Using Vector Quantization",
%  IEEE Trans. Comm., vol. 34, no. 7, July 1986, pp. 703-710.

h

[vector_dimension, num_input_vectors] = size(InputProcess);
codebook_size = size(InitialCodebook, 2);

num_intervals = floor(num_input_vectors/Interval);

codebook = InitialCodebook;

index_length = log(codebook_size)/log(2);

Distortion = zeros(l, num_intervals*Interval);

Index = zeros(1l, num_intervals*Interval);

OutputProcess = zeros(vector_dimension, num_input_vectors);

num_replacements = 0;
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for adaption_interval = 1:num_intervals

X = InputProcess(:, ((adaption_interval - 1)*Interval +
1) : (adaption_intervalxInterval));

max_dist = max(diag(X.’ * X));

new_codebook = 1lbg(X, codebook_size, 1, 0, codebook);

diff = new_codebook - codebook;

distance = diag(diff.’ * diff);

replace = (distance > ReplenishmentThreshold*max_dist);

codebook(:, replace) = new_codebook(:, replace);

num_replacements = num_replacements + sum(replace);

[distortion, partition] = vq(X, codebook);

Distortion(((adaption_interval - 1)*Interval + ...

1) : (adaption_intervalxInterval)) = distortion;
Index(((adaption_interval - 1)*Interval +

1) : (adaption_interval*Interval)) = partition;
OutputProcess(:, ((adaption_interval - 1)*Interval + ...

1) : (adaption_intervalxInterval)) = codebook(:, partition);

end

FinalCodebook = codebook;

% Variable-rate VQ

prob = zeros(1l, codebook_size);

if (size(Index, 2) > 0)
for codeword = 1:codebook_size

prob(codeword) = sum(Index == codeword);

end
prob = prob / size(Index, 2);

end

Rate_VQ = entropy(prob);

% Side information involves sending each vector component of the new codeword
% plus the index of its location in the codebook, for each codeword added

% to codebook

Rate_Side = num_replacements*(index_length + ...

vector_dimension*ComponentBits)/(num_intervals*Interval);

Rate = (Rate_VQ + Rate_Side)/vector_dimension;
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B.6 The Lancini-Perego-Tubaro Algorithm Source Code

function [Distortion, Rate, FinalCodebook, OutputProcess] = ...

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

1pt92(InputProcess, Interval, InitialCodebook, NewCodebookSize,

ReplacementNum, ComponentBits);

[Distortion, Rate, FinalCodebook, OutputProcess] =
1pt92(InputProcess, Interval, InitialCodebook,

NewCodebookSize, ReplacementNum, ComponentBits)

InputProcess: (k x N), input vector process of N k-dimensional vectors

Interval: (scalar), number of vectors per adaption interval

InitialCodebook: (k x M), M k-dimensional codewords

NewCodebookSize: (scalar), number of codewords to train during each
adaption interval

ReplacementNum: (scalar), number of local codewords to add to codebook
during each adaption interval (ReplacementNum <= NewCodebookSize)

ComponentBits: (scalar), number of bits for each codeword vector

component used in calculating the side information rate

Distortion: (1 x N), squared error for each input vector
Rate: (scalar), average rate of encoding, bits per sample
FinalCodebook: (k x M), M k-dimensional codewords

OutputProcess: (k x N), quantized output process

During each adaption interval, a local codebook of NewCodebookSize
codewords is trained using competitive learning with random initialization
from the training set. The ReplacementNum most significant codewords

from the local codebook replace the ReplacementNum least frequently used
codewords in the codebook, and then the vectors of the adaption interval

are quantized.

R. Lancini, F. Perego, and S. Tubaro, "Neural Network Approach for
Adaptive Vector Quantization of Images," ICASSP 1992, 389-392.

if (ReplacementNum > NewCodebookSize)

disp(’lancini_92: ReplacementNum must be no more than NewCodebookSize’)

return

end
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[vector_dimension,N] = size(InputProcess);

codebook_size = size(InitialCodebook, 2);

num_intervals = floor(N/Interval);

codebook = InitialCodebook;

Distortion = zeros(1l, num_intervals*Interval);

Index = zeros(1l, num_intervals*Interval);

OutputProcess = zeros(vector_dimension, num_input_vectors);

num_used = zeros(1, codebook_size);

for adaption_interval = 1:num_intervals

X = InputProcess(:, ((adaption_interval - 1)*Interval +

1) : (adaption_intervalxInterval));

% Training set is either whole adaption interval or 10 times size of

% local codebook.

training set_size = min([size(X, 2) NewCodebookSizex*10]);

if (training_set_size < NewCodebookSize)
disp(’lancini_92: Adaption interval too small for training local codebook’)
return

end

% Choose training vectors randomly from adaption interval

training_set = X(:, rem(round(rand(1l,training_set_size)*1000),

training_set_size)+1);

% Initialization of CL: random vectors from training set
initialcodebook = training_set(:, ..
rem(round (rand (1,NewCodebookSize) *1000) , NewCodebookSize)+1);
[new_local_codebook, distortion] = cl(training_set,
NewCodebookSize, 0.2, 100, 0, 0.05, initialcodebook) ;

% Get indices of least frequently used codewords in old codebook
[dummy, 1fu] = sort(num_used);

1fu = 1fu(l:ReplacementNum) ;

% Find closest codewords in old codebook to codewords in local codebook
[distortion, partition] = vq(new_local_codebook, codebook) ;
[distortion, index] = sort(distortion);

% Choose local codewords that are farthest away from corresponding old
% codewords.

index = index(size(index, 2):-1:1);
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codebook(:, 1fu) = new_local_codebook(:, index(1:ReplacementNum));

num_used(1lfu) = zeros(1l, ReplacementNum);

[distortion, partition] = vq(X, codebook);
for j = l:size(partition, 2)
num_used(partition(j)) = num_used(partition(j)) + 1;

end

Distortion(((adaption_interval - 1)*Interval + ...

1) : (adaption_intervalxInterval)) = distortion;
Index(((adaption_interval - 1)*Interval + ...

1) : (adaption_interval*Interval)) = partition;
OutputProcess(:, ((adaption_interval - 1)*Interval + ...

1) : (adaption_interval*Interval)) = codebook(:, partition);

end
FinalCodebook = codebook;
index_length = log(codebook_size)/log(2);

% Variable-rate VQ

prob = zeros(l, codebook_size);

if (size(Index, 2) > 0)
for codeword = 1:codebook_size

prob(codeword) = sum(Index == codeword);

end
prob = prob / size(Index, 2);

end

Rate_VQ = entropy(prob);

% Side information requires only sending vector components as decoder knows
% which ones are replaced due to past least-frequently-used statistics
Rate_Side = ReplacementNum* (ComponentBits*vector_dimension)/Interval;

Rate = (Rate_VQ + Rate_Side)/vector_dimension;

B.7 The Lightstone-Mitra Algorithm Source Code

function [Distortion, Rate, FinalCodebook, FinalProb, OutputProcess] = ...
1m96 (InputProcess, Interval, Lambda, InitialCodebook,
InitialProb, ComponentBits, Iterations);

h

223



% [Distortion, Rate, FinalCodebook, FinalProb, OutputProcess] =

% 1m96 (InputProcess, Interval, Lambda, InitialCodebook,

% InitialProb, ComponentBits)

A

% InputProcess: (k x N), input vector process of N k-dimensional vectors
b

% Lambda: (scalar), algorithm parameter, specifies weighting of rate

Interval: (scalar), number of vectors per adaption interval

% into adaption cost function

% InitialCodebook: (k x M)

% InitialProbabilties: (1 x M) initial codeword probabilties

% ComponentBits: (scalar), number of bits for each codeword vector

%  component used in calculating the side information rate

% Iterations: (scalar) (optional) default = 1, number of iterations of
% algorithm to run over each adaption interval

A

% Distortion: (1 x N), squared error for each input vector

% Rate: (scalar), average rate for encoding of process (bits per sample)

% FinalCodebook: (k x M), M k-dimensional vectors

% FinalProb: (1 x M) final codeword probabilties
% OutputProcess: (1 x N), quantized output process
yA

% Implements Lightstone and Mitra’s AVQ algorithm. Uses entropy-

% constrained VQ (ECVQ) to update the codebook for each adaption interval.
[/
% InitialCodebook. New VQ centroids are training using one iteration
% of ECVQ (Chou, Lookabaugh, Gray 1989). New centroids are added to

% codebook based on tradeoff between improvement in distortion and

InitialProb determine the initial variable-length code for the

% cost of side-information rate. Lambda controls the rate-distortion

% tradeoff in training and in codeword updating. Iterations (default = 1)

% controls the number of ECVQ-training followed by codeword-updating

% iterationms.

h

% M. Lightstone and S. K. Mitra, "Image-Adaptive Vector Quantization in an
% Entropy-Constrained Framework," IEEE Trans. Image Proc., to appear 1996.
h

[vector_dimension, num_input_vectors] = size(InputProcess);
num_intervals = floor(num_input_vectors/Interval);
codebook_size = size(InitialCodebook, 2);

Distortion = zeros(l, num_input_vectors);

Index = zeros(1l, num_input_vectors);
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OutputProcess = zeros(vector_dimension, num_input_vectors);

if (Texist(’Iterations’))
Iterations = 1;

end

codebook = InitialCodebook;
prob = InitialProb;

num_replaced = 0;
for adaption_interval = 1:num_intervals

X = InputProcess(:, ((adaption_interval - 1)*Interval +

1) : (adaption_interval*Interval));
codewords_updated = zeros(1l, codebook_size);
for iteration = 1:Iterations

[centroids, prob2, partition] = ecvq_train(X, codebook, prob, Lambda, 1);
cnt = zeros(1l, codebook_size);

centroid_index = 0;

for codeword = 1:codebook_size
part = partition == codeword;
cnt (codeword) = sum(part);
if (cnt(codeword) > 0)
centroid_index = centroid_index + 1;
prob(codeword) = prob2(centroid_index) ;
if (cnt(codeword) == 1)
dl = 0;
else
[d1, dummy] = vq(X(:,part), centroids(:,centroid_index));
dl = mean(dl);
end
[d2, dummy] = vq(X(:,part), codebook(:,codeword));
d2 = mean(d2);
delta_d = d1 - d2;
delta_r = ComponentBits*vector_dimension/cnt(codeword) ;
delta_j delta_d + Lambda*delta_r;
if (delta_j < 0)
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codewords_updated(codeword) = 1;
codebook(:,codeword) = centroids(:,centroid_index);
end
else
prob(codeword) = 0;
end

end

end

num_replaced = num_replaced + sum(codewords_updated) ;
[distortion, partition] = ecvq(X, codebook, prob, Lambda) ;
Distortion(((adaption_interval - 1)*Interval + ...

1) : (adaption_interval*Interval)) = distortion;
Index (((adaption_interval - 1)*Interval + ...

1) : (adaption_interval*Interval)) = partition;
OutputProcess(:, ((adaption_interval - 1)*Interval + ...

1) : (adaption_interval*Interval)) = codebook(:, partition);

end

FinalCodebook = codebook;
FinalProb = prob;

index_length = log(codebook_size)/log(2);

% Variable-rate VQ

prob = zeros(1l, codebook_size);

if (size(Index, 2) > 0)
for codeword = 1:codebook_size

prob(codeword) = sum(Index == codeword);

end
prob = prob / size(Index, 2);

end

Rate_VQ = entropy(prob);
Rate_Side = num_replaced*(vector_dimension*ComponentBits + ...

index_length)/num_input_vectors;

Rate = (Rate_VQ + Rate_Side)/vector_dimension;
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B.8 The GTR Algorithm Source Code

function [Distortion, Rate, FinalCodebook, FinalProb, OutputProcess] = ...

h
h
h
h
h
h
h
h
Y/
h
h
h
h
h
h
h
h
Y/
h
h
h
h

gtr (InputProcess, Lambda, ProbWindow, InitialCodebook, InitialProb,

ComponentBits) ;

[Distortion, Rate, FinalCodebook, FinalProb, OutputProcess] =
gtr (InputProcess, Lambda, ProbWindow, InitialCodebook,
InitialProb, ComponentBits)

InputProcess: (k x N), input vector process of N k-dimensional vectors
Lambda: (scalar), rate-distortion parameter
ProbWindow: (scalar), window for time-averaging of probability estimates
InitialCodebook: (k x M)
InitialProb: (1 x M), initial probabilities for each partition

region
ComponentBits: (scalar), number of bits for each codeword vector

component used in calculating the side information rate

Distortion: (1 x N), squared error for each input vector

Rate: (scalar), average rate for encoding of process (bits per sample)
FinalCodebook: (k x M), M k-dimensional vectors

FinalProb: (1 x M), final codeword probabilities

OutputProcess: (k x N), quantized output

Implements the generalized threshold replenishment algorithm (GTR)

for AVQ. Uses a move-to-front codebook reordering strategy.

[vector_dimension, num_input_vectors] = size(InputProcess);

codebook_size = size(InitialCodebook, 2);

codebook

InitialCodebook;

codeprob = InitialProb;

FinalDistortion = zeros(1l, num_input_vectors);
Index = [];

total_replaced = 0;

const = -1/log(2);

OutputProcess = zeros(vector_dimension, num_input_vectors);

for current_vector = 1:num_input_vectors
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[distortion, winner] = ecvq(InputProcess(:, current_vector),

codebook, codeprob, Lambda);

% Estimate number of vectors in window that map to each partition
cnt = ProbWindow*codeprob;
% Increment winning partition

newcnt = cnt(winner) + 1;

delta_d = -distortion;

delta_r = vector_dimension*ComponentBits;

% Change in cost function to to update

delta_J = delta_d + Lambda*delta_r;

if (delta_J < 0)
% Replace LRU codeword (use move-to-front) with current
% source vector
codebook = [InputProcess(:, current_vector) codebook(:,
1: (codebook_size - 1))];
% Split count between new codeword and winning codeword
if (winner ~= codebook_size)
cnt (winner) = newcnt/2;
else
cnt(winner) = newcnt;
end
cnt = [cnt(winner) cnt(1:(codebook_size - 1))];
codeprob = cnt/sum(cnt);
total_replaced = total_replaced + 1;
FinalDistortion(current_vector) = 0;
else
% No codeword update, just move winner to front of codebook
reorder_indices = [winner 1:(winner - 1) (winner + 1):codebook_size];
codebook = codebook(:, reorder_indices);
cnt (winner) = newcnt;
codeprob = cnt(reorder_indices)/sum(cnt);
FinalDistortion(current_vector) = distortion;
Index = [Index winner];

end

OutputProcess(:, current_vector) = codebook(:, 1);
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end

Distortion = FinalDistortion;

FinalProb = codeprob;

prob = zeros(1l, codebook_size);
if (size(Index, 2) > 0)
for codeword = 1:codebook_size
prob(codeword) = sum(Index == codeword);
end
prob = prob / size(Index, 2);

end

total_bits = total_replaced*(1l + vector_dimension*ComponentBits) + ...

(num_input_vectors - total_replaced)*(1 + entropy(prob));

Rate = total_bits/num_input_vectors/vector_dimension;

FinalCodebook = codebook;
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