AN ALGORITHM FOR IMAGE COMPRESSION
USING DIFFERENTIAL VECTOR
(QUANTIZATION

A Thesis

Presented in Partial Fulfillment of the Requirements for
the Degree Master of Science in the

Graduate School of The Ohio State University
by

James E. Fowler, Jr., B. S.

X Xk %k Xk X

The Ohio State University

1995

Master’s Examination Committee:

Stanley C. Ahalt Approved by
Ashok K. Krishnamurthy

Adviser

Department of Electrical
Engineering

To my parents

i

THESIS ABSTRACT

THE OHIO STATE UNIVERSITY
GRADUATE SCHOOL

NAME: Fowler, James E., Jr. QUARTER/YEAR: SP 92
DEPARTMENT: Electrical Engineering DEGREE: M. S.
ADVISER’S NAME: Ahalt, Stanley C.

TITLE OF THESIS: An Algorithm for Image Compression Using Differential
Vector Quantization

There has been recent interest in image compression for scientific applications.
An algorithm for compression of single, monochrome images which preserves salient
image features such as edges is discussed. The algorithm described combines differ-
ential pulse code modulation (DPCM) and vector quantization (VQ) in a method
called differential vector quantization (DVQ). An Artificial Neural Network (ANN)
is used to train codebooks for the vector quantizer. Such ANN training is shown to
produce codebooks with entropy sufficient that subsequent Huffman coding cannot
provide significant additional compression. Consequently, the DV(Q algorithm pro-
vides compression rates similar to those achieved by scalar DPCM methods while
remaining robust to transmission channel errors.

Adviser’s Signature
Department of Electrical
Engineering

ACKNOWLEDGMENTS

I would like to thank Dr. Stan Ahalt and Dr. Ashok Krishnamurthy for the
invaluable guidance and motivation provided. Also, I would like to thank Matt
Carbonara for help with the DV(Q codebook training process. Finally, I thank
the Ohio State University and the Ohio Space Grant Consortium for providing me

graduate fellowships in support of this research.

il

Vita

January 19, 1967 Born—Huntsville, Alabama, U.S.A.

1985 —1990o Ohio Academic Scholar
The Ohio State University
Columbus, Ohio, U.S.A.

March 1990, B. S. Computer and Information Science
Engineering,
Summa Cum Laude
The Ohio State University
Columbus, Ohio, U.S.A.

1991 — Present NASA Space Grant/OAI Fellowship
Ohio Space Grant Consortium

1990 — Present University Fellow
The Ohio State University
Columbus, Ohio, U.S.A.

PUBLICATIONS

“Compiled Instruction Set Simulation,” in Software—Practice and Fxperience,
Vol. 21, pp. 877-889, August 1991 (with Christopher Mills and Stanley C. Ahalt).

FIELDS OF STUDY

Major Field: Electrical Engineering

v

Studies in Communications: Professors R. L. Moses, L. C. Potter
A. K. Krishnamurthy, K. L. Boyer

Studies in Computer Engineering: Professors S. C. Ahalt, F. Ozgiiner

TABLE OF CONTENTS

DEDICATION e il
ACKNOWLEDGMENTS iii
VITA e iv
LIST OF FIGURES o . viii
LIST OF TABLES o o X
CHAPTER PAGE
I INTRODUCTION o e 1
1.1 Types of Image Compression Techniques 3

1.1.1 Lossless Image Compression 3

1.1.2 Predictive Techniques 5)

1.1.3 Transform Coding 8

1.2 Algorithm Objectives, 10

1.3 A Scalar DPCM Algorithm, 12

I BACKGROUND THEORY 16
2.1 Vector Quantization 16

2.2 Artificial Neural Networks and Vector Quantization 20

2.3 Differential Vector Quantization. 21

IIT DVQ Algorithm Details 24
3.1 Predictiono 24

3.2 Codebook Design oo 28

vi

IV Results

..................................... 29
4.1 Prediction L e e 29
4.2 Comparison to scalar DPCM 32
4.3 Codebook Entropies 38
V ~ CONCLUSIONS AND FUTURE RESEARCH 40
REFERENCES e 42

Vil

LI1ST OF FIGURES

FIGURE PAGE
1 Image compression system block diagram 2
2 DPCM block diagram Lo 6
3 Scalar DPCM algorithm block diagram 13
4 Scalar DPCM predictor 14
5 Vector quantization conceptual diagram 17
6 Differential vector quantizer algorithm block diagram 22
7 Pixels used in the prediction schemes 25
8 FSCL training procedure 28
9 Lenna, original image Lo 34
10 Reconstructed image using the scalar DPCM algorithm 34
11 Reconstructed image using the DVQ algorithm (256 codewords) 35
12 Difference between the reconstructed scalar DPCM image and the

original image (enhanced) 35
13 Difference between the reconstructed DV(Q image and the original

image (enhanced) Lo Lo L 36
14 Reconstructed image with an error-prone channel, scalar DPCM al-

gorithm, ber = 1000 36

viil

15

Reconstructed image with an error-prone channel, DVQ algorithm
(256 codewords), ber = 1000

X

Li1ST OF TABLES

PAGE
Prediction equations for encoding and decoding 26
Mean squared error (MSE) of the prediction schemes 30

MSE of the prediction schemes with individually tailored codebooks . 31
MSE of scalar DPCM and DVQ algorithms 32

Codebook entropies for DVQ 39

CHAPTER 1

INTRODUCTION

Digital images are becoming quite prevalent in our society and can take the form of
both still pictures (single frames) or motion video (sequences of frames). Still digital
images arise in applications such as medicine (computer tomography, magnetic res-
onance imaging, and digital radiology), satellite data, weather prediction, facsimile
transmission, electronic cameras, and multimedia software [1, 2]. Digital motion
video has been used in broadcast television, teleconferencing, and video-phone tech-
nologies [1, 2]. Despite the differing contexts of use, these digital images have one
thing in common — invariably, they are comprised of an enormous amount of data.
Reduction of the size of this data for both the storing and transmission of digital
images is becoming increasingly important as these images find more applications.

Image compression refers to the reduction of the size of data that images contain.
Generally, image compression schemes exploit certain data redundancies to convert
the image to a smaller form. A typical image compression system is shown in
Figure 1. The data reduction, or compression, is performed by a device known as
the encoder. The encoder reduces the data size of the original image, outputting

a compressed image. The compressed image passes through a channel (usually

1

an actual transmission channel or a storage system) to the decoder. The decoder
reconstructs, or decompresses, the image from the compressed data. The ratio of
the size (amount of data or bandwidth) of the original image to the size of the
compressed image is known as the compression ratio or compression rate. The
higher the compression rate, the greater the reduction of data. Depending on the
application, the channel may be affected by noise which results in distortion of the
compressed image during transmission. If so, the channel is known as an error-prone

channel; otherwise, it is errorless.

Original
Image » Encoder Compressed
Image
Channel

Reconstructed
Image

Decoder

Figure 1: Image compression system block diagram

This paper describes an image compression algorithm known as differential vector
quantization (DVQ). The first sections of the paper provide a general overview
of different types of image compression and some background theory used in the

development of the algorithm. The details of the algorithm are presented next,

followed by the experimental results and conclusions.

1.1 Types of Image Compression Techniques

There are many compression techniques, but they may be partitioned into the three
general categories of lossless, predictive, and transform coding algorithms. A gen-
eral description of these categories and their use in image compression applications

follows.

1.1.1 Lossless Image Compression

In lossless image compression, the reconstructed image output by the decoder is
exactly the same as the original image input to the encoder, provided the channel
is errorless. Usually lossless algorithms code pixel intensities, although, when used
in conjunction with other techniques, they can code other quantities. One form
of lossless compression is Huffman coding. In this technique, it is assumed that
each pixel intensity has associated with it a certain probability of occurring and
this probability is spatially invariant. Huffman coding assigns a binary code to each
intensity value, with shorter codes going to intensities with higher probability [3].
If the probabilities can be estimated a priori, then the table of Huffman codes can
be fixed in both the encoder and the decoder. Otherwise, the coding table must be
sent to the decoder along with the compressed image data.

The compression rate of Huffman coding is limited by the entropy of the pixels.

Pixel entropy is defined as

N
H = —Zpiloggp,- (1.1)
i=1

where p; is the probability of occurrence of the ith intensity level, and N is the
number of possible pixel intensity levels. By Shannon’s noiseless coding theorem,
it is possible to code, without distortion, these pixel intensities with an average of
H + € bits/pixel, where € > 0 is an arbitrarily small quantity [1]. Entropy coding
methods, of which Huffman coding is the most efficient, attempt to reduce the bit
rate to as close to H as possible.

Huffman coding is lossless only when the channel is errorless. Since Huffman
coding employs a variable-length code scheme, it is possible for an error-prone chan-
nel to have serious detrimental effects. The only indication of code length is the
code itself. Consequently, a channel error may cause the decoding to diverge signifi-
cantly from the encoding as the decoder loses track of the code lengths or perceives
an illegal code. This effect may be lessened by resynchronizing the decoder to the
encoder periodically (such as at the end of each horizontal image line) [4]. Also,
additional codes may be transmitted to allow for error detection at the expense of
decreased compression rate [1].

Other lossless compression techniques include run-length coding, contour coding,
arithmetic coding, and conditional replenishment [3]. Like Huffman coding, they
have limited compression ratios and so are used only in very sensitive applications
(such as medical imagery) where data loss is unacceptable, or in conjunction with

other techniques [2]. Because of their sensitivity to channel errors, lossless techniques

are effective only when channel errors are infrequent or the channel is errorless.

1.1.2 Predictive Techniques

Adjacent pixels usually possess a high degree of spatial coherence; that is, the inten-
sity values of adjacent pixels are highly correlated. Predictive techniques exploit this
spatial coherence and encode only the new information between successive pixels [1].
Predictive algorithms feature a predictor which calculates a value from previously
encoded pixels. This prediction is subtracted from the actual image value and the
difference is encoded. The difference values typically have smaller dynamic range
than the original image quantities, so they may be encoded using fewer bits per
pixel [5].

One frequently used method of predictive image compression is differential pulse
code modulation (DPCM). A DPCM encoder/decoder system is shown in Figure 2.
In the encoder, the predictor calculates a predicted value, Z. The predicted value
is subtracted from the input value to form the difference, d. The difference is
quantized and passed through the channel. The quantized difference, dA, is added to
the predicted value, Z, to form the reconstructed value, . Reconstructed values are
used by the predictor in the calculation of the next predicted value. The decoder
receives the quantized difference from the channel and calculates a reconstructed
value using the same prediction loop as the encoder. DPCM may be performed on
single pixels or blocks of pixels, in which case it is known as vector DPCM [1].

If image statistics are known and relatively stationary, the predictor may be

|
x |+ d 3 l
Input Quantizer * :
| - |
| |
| + :
| ~ A
X X |
: Predictor |
| + :
|
| | .
| | Channel
: R
I ENCODER |
- |
i‘ ——————————————————— 1
|
| : .
Output = I (e :
| .
|
: |
|
| % I
| » Predictor |
| |
: |

DECODER |

Figure 2: DPCM block diagram

made optimal in the mean square sense. However, for hardware implementations,
a simpler averaging predictor involving integers and shift operations is usually used
[1]. Generally, only the nearest neighbor pixels are used as additional, more distant
pixels do not provide better prediction [1].

The quantizer in predictive algorithms is responsible for three types of distor-
tions: granular noise, slope overload, and edge-busyness [1, 3]. Granular noise is a
distortion of areas of near-constant intensity and occurs when the quantizer does not
have sufficient quantization levels of small difference values. Slope overload occurs
when the quantizer does not have a large enough level for large difference values
that occur at sharp image edges. Edge-busyness occurs at less sharp edges when
different pixel rows are quantized differently.

Channel errors are not confined to the portion of the image in which they occur.
The predictive process in the decoder tends to “smear” the error to other parts
of the image. If causal prediction is used in scan-line based DPCM, this smearing
occurs to lower right from the point of error occurrence.

Predictive techniques, like lossless methods, are computationally simple and eas-
ily realized in hardware. Prediction yields relatively good compression ratios and
may be used with transform coding or lossless image compression techniques to
achieve additional compression. Also, the predictor may be changed on-line to com-
pensate for varying image statistics; this scheme is known as adaptive prediction
[1]. Practical DPCM algorithms have been developed for both scalar [4] and vector

[5] architectures. Also, prediction may be performed between successive frames in

video compression. Techniques such as motion compensation employ such tempo-
ral prediction in the form of displacement estimations of objects within the moving

image [1].

1.1.3 Transform Coding

Transform coding is a mathematic operation that converts a large set of highly
correlated pixels into a smaller set of uncorrelated coefficients [1, 3]. Usually, the
image is broken into blocks of M x N pixels, and the transform applied to each

block separately. The two-dimensional transform operation can be represented as

F(u,v) = Z Y f(@,y) Pu(z, y) (1.2)

where f(z,y) is the image data and the ®,,,(z, y) are a set of orthogonal basis vectors
[3]. Usually, M = N and the transform is applied to square blocks. The variables
u and v may be thought of as spatial frequency variables and consequently F'(u,v)
as frequency coeflicients, although this frequency domain representation is accurate
only when the basis vectors ®,,(z,y) are the complex exponentials of the Fourier

transform [3]. The image data may be losslessly recovered via the inverse transform

flaz,y) = g_jo z_jop(u,v)q>;;(u,v) (1.3)

where the ®,!(u, v) are the basis vectors of the image [3].
Data compression occurs only after the transform coefficients are quantized [3].

Some of the coefficients, especially those of high spatial frequency, often have very

small magnitudes, and, consequently, are quantized very coarsely or omitted com-
pletely. Compression results from encoding the block of coefficients with fewer bits
than the original image block at the loss of some image fidelity by the quantization.
Before transmission through the channel, the coefficients may be entropy encoded
for additional compression [3].

Of the many transforms available, several are commonly considered in image
compression applications. The Karhunen-Loéve transform (KLT) is optimal in the
sense that it minimizes the mean square distortion of the reconstructed image for
a given number of bits [1]. However, KLT is rarely used in practice because of its
substantial computational time and that different basis vectors must be calculated
for each image and sent with the image data [3]. The two-dimensional Fourier trans-
form is not used for compression because it involves complex arithmetic; however, it
is useful if a frequency domain representation is needed for analysis [1]. The discrete
cosine transform (DCT) is often used in practical applications as its basis vectors are
two-dimensional cosine functions and it yields performance near that of the KLT.
Also, the arithmetic is real and there are “fast” computational algorithms available
[1]. The sine, Hadamard, Haar, and slant transforms are other transforms that are
sometimes used in image compression [1].

Generally, transform coding is capable of greater compression than predictive
techniques [1]. Because of the block nature of the transform, distortions due to
quantization and channel errors tend to be distributed throughout the block. If the

block size is relatively small, these distortions are confined to a small portion of the

10

image and may not be noticeable. However, these transforms tend to make edges
“blocky,” and, since the quantization tends to weight low over high spatial frequen-
cies, edges and areas of texture may be blurred [3]. Transform techniques require
much more computation than either lossless techniques or predictive techniques;
however, recently several discrete cosine transform integrated circuit chips have be-

come available which will reduce the complexity of hardware transform coders [2].

1.2 Algorithm Objectives

Because of the many varied techniques, design of an image compression system
must follow a careful consideration of the context within which the system will
operate, the type of data it will process, and how it will be implemented. Some
alternatives are: compression for storage versus bandwidth reduction; single, still
images versus moving images (video); hardware implementation versus software;
high rate of compression versus image quality; real-time versus batch processing;
and a channel which is errorless versus an error-prone channel. The choices made
will affect the types of compression techniques used in the design. For purposes of
this paper, we will assume the following context.

It is desired that an image compression algorithm be designed for compression
of color television signals to be used in not only current video systems, but also
forthcoming high definition television (HDTV) and high resolution, high frame rate
video technology (HHVT). It is expected that the algorithm will be used for scien-

tific purposes, so it is required that it achieve reasonable compression rates without

11

distorting salient features of the images. The following is an example of such an
application. Scientific experiments performed in space may be video recorded in an
HHVT format. These video recordings may be recorded directly to tape or optical
disk, or they may be transmitted to Earth. Because of limited bandwidth and stor-
age space available to the spacecraft, image compression is needed. Since precision
measurements will be made from these recordings, it is desired that features, such
as edges and color content, be as little altered as possible, and channel errors cannot
be ignored. Several examples of scientific experiments to be performed in space and
recorded with HHVT equipment are given in [3].

The goals for the image compression algorithm of the example above are as
follows. Reconstructed images should be very high quality, especially, edges should
be preserved not only in sharpness but also in location. The algorithm should be
insensitive to channel errors. Although it may be assumed that such errors occur
rather infrequently in real applications, the algorithm will be tested under conditions
of a very noisy channel to assure robustness. Eventually, the algorithm will be built
in hardware, so the algorithm should be computationally simple in order to permit
hardware construction. Finally, the algorithm should process video images in real
time so that substantial buffering (at additional implementation cost) is unnecessary.

The image compression algorithm presented in this paper uses a combination of
vector quantization (VQ) and differential pulse code modulation (DPCM), and is
known as differential vector quantization (DVQ). It will be shown that this DVQ al-

gorithm yields high quality images and is insensitive to channel errors. To simplify

12

the testing of the algorithm, still monochrome images were used during develop-
ment. It is expected that temporal considerations for real-time video will be a

straightforward addition to the basic algorithm.

1.3 A Scalar DPCM Algorithm

The DVQ algorithm detailed in this paper was originally an adaptation of the popu-
lar differential pulse code modulation (DPCM) compression method. Scalar DPCM
algorithms have been developed for practical video applications as they are well-
suited for real-time hardware implementation [1]. A scalar DPCM algorithm, de-
signed for real-time video compression and implemented in hardware by NASA at
Lewis Research Center, was chosen as a basis for comparison. This scalar DPCM
image compression algorithm is described in depth in [4]. A brief description is given
below.

The scalar DPCM architecture processes NT'SC composite color television signals
in real time, averaging a compression of about 1.8 bits/pixel. The algorithm features
nonuniform scalar quantization within a DPCM framework. Also, a nonadaptive
predictor and a Huffman coder are used to achieve greater compression than possible
with DPCM alone. Figure 3 is a block diagram of the algorithm.

The nonadaptive predictor generates a value, NAP, which is subtracted with
the current predicted value, PV, from the current pixel, PI X, to yield the current
difference, DI F'F'. The nonadaptive predictor generates this N AP value from the

previous difference by indexing into a prestored array created from statistics of

Current
Pixel + DIFF Scalar QL Huffman
PIX \Z _ Quantizer Coder
Nonadapter
Predictor Inverse
Scalar
_J.W Quantizer
ofrr
BV
Predictor
ENCODER
Nonadapter
Predictor
NAP
Reconstructed +
Pixel BIX + Inverse oL Inverse
) Scalar Huffman
yiiga) Quantizer Coder
+
BV
L—» Predictor
DECODER

Figure 3: Scalar DPCM algorithm block diagram

13

14

many images. The nonadaptive predictor improves the edge performance of DPCM
because it results in quicker convergence at transition points in the image [4].
Figure 4 shows the pixels used by the codec predictor. The predictor averages

the pixels above and to the left of the current pixel to generate the predicted value.

B C

A | PIX

!

Current
Pixel

_A+cC

P
4 2

Figure 4: Scalar DPCM predictor

The quantizer has 13 levels and is nonuniform, with more levels provided for
small difference magnitudes. The Huffman coder was designed so that the shortest
transmitted codewords correspond to the quantization levels that have the highest
probability of occurrence. Use of this Huffman coding provides significant com-
pression beyond what is obtainable with DPCM alone; however, since it features a
variable-length code, it is susceptible to transmission errors.

The experimental results obtained from the hardware implementation of this al-
gorithm suggest that it performs quite well. The reconstructed images are nearly

indistinguishable from the originals and the compression rate results in significant

15

bandwidth compression [4]. The DVQ algorithm described in this paper adds ro-
bustness to transmission errors to these advantages by replacing scalar quantization

with more efficient vector quantization.

CHAPTER 11

BACKGROUND THEORY

2.1 Vector Quantization

The philosophy of vector quantization (VQ) stems from Shannon’s rate-distortion
theory which implies that, theoretically, better performance can always be obtained
from coding vectors of information rather than scalars [6]. An extensive discussion of
vector quantization techniques and applications is given in [6], and the basic theory
is summarized in the context of image applications in [7, 8].

The basic conceptual diagram of a vector quantization system is presented in
Figure 5. The VQ system consists of an encoder, a decoder, and a transmission
channel. The encoder and the decoder each have access to a codebook, Y. The
codebook Y is a set of Y codewords (or codevectors), y, where each y is dimension
n? and has a unique index, j,0<j <Y — 1.

The image is broken into blocks of pixels called tiles. Each image tile of n X n
pixels can be considered a vector, u, of dimension n?. For each image tile, the

encoder selects the codeword y that yields the lowest distortion by some distortion

measure d(u,y). The index, j, of that codeword is sent through the transmission

16

Codebook Y

Select codeword y
Input vector from codebook Y '
fromimage Y thatisclosestto u |- j
Transmit index j
of codeword y

ENCODING

Transmission
Channel

Codebook Y

A
\i
Retrieve codeword y
Output vector to from codebook ¥
reconstructed U= tLTsaé Zg?jg\]/\?;)é jv R
Image in reconstructed
image

DECODING

Figure 5: Vector quantization conceptual diagram

17

18

channel. If the channel is errorless, the decoder retrieves the codeword y associated
with index j and outputs y as the reconstructed image tile, .
Mathematically, VQ encoding is a mapping from a k-dimensional vector space

to a finite set of symbols, J,
VQ:u=(uy,us...,u) = j (2.1)
where k = n?, j € J, and J has size J = Y. The rate, R, of the quantization is
R =logY (2.2)

where R is bits per input vector. The compression rate is R/n? bits per pixel.
Typically, Y is chosen to be a power of 2, so R is an integer. Consequently, VQ
encoding generates codes of R bits in length with every R-bit code corresponding

to some y € Y. Two common distortion measures are squared error

k
dyg(u,y) = > (i —) (2.3)
i=1
and absolute error
k
dabs(u7 y) - Z |uz - yz| (24)
i=1

The performance of a vector quantization system depends on the composition of
the codebook [7]. Several criterions may be used to design an optimal codebook. It
may be desired that the average distortion (typically mean squared error) due to VQ
be minimized. Another criterion is to maximize the entropy of the codebook; that
is, to ensure that each of the codewords is used equally frequently on the average

[7]. Once the criterion is decided upon, the optimal codebook must be determined.

19

Typically, the probability distribution of the input images is not known, so the
codebook is constructed by training [7]. During training, a set of representative
input vectors (i.e. sample images) are used to determine the codebook.

Typically, once the codebook is trained, it is fixed in both the encoder and the
decoder. However, in adaptive V(Q, the codebook is modifed as image statistics
change. New codewords are trained as the compression system is operating and
these new codewords replace old ones in the codebook periodically. The encoder
must inform the decoder of the changes made to the codebook in some way.

In the past, vector quantization has had limited use in image compression appli-
cations because of the large computational expenses for the encoding and training
processes [7]. In both processes, distortions are calculated for each codeword in the
codebook and these distortions are compared to find the closest codeword. Since
these calculations must be performed for each input vector, the overall operation
is quite computationally expensive. Another disadvantage to vector quantization is
that, being block oriented, it tends to make the image edges “blocky” [5].

Vector quantization has several advantages in addition to its potential for sig-
nificant bit rate reduction. It is possible to construct the codebook such that the
entropy is maximized [7]. Because VQ produces fixed length codes, such entropy-
based codebooks can be used to yield maximal-entropy encoding of the image with-
out resorting to variable-length codes [7]. In addition, the codebook can be arranged
so that codevectors that are close in Euclidean distance have code indices which are

close in Hamming distance. The result is that when an error occurs, the decoder

20

selects a tile that is close (in the mean squared sense) to the one originally broad-
cast [7]. Thus, maximum compression (based on pixel entropy) is achieved and the

coding is relatively error-insensitive.

2.2 Artificial Neural Networks and Vector Quantization

The computational complexity of traditional VQ codebook design methods has re-
stricted their use in real-time applications [6, 9]. One such traditional approach is
the Linde, Buzo, and Gray (LBQG) algorithm [9] which is a locally-optimal algorithm
that has been extensively used in designing vector quantizers for speech and image
encoding. It has been proposed that Artificial Neural Networks (ANNs) be used for
design of VQ codebooks to circumvent the limitations of traditional algorithms [7].

ANNs consist of a large number of simple, interconnected computational units
that can be operated in parallel. Also, ANN codebook design algorithms do not
need access to the entire training data set at once during the training process.
These features make ANN algorithms ideally suited for the design of adaptive vector
quantizers [7].

One ANN, the Frequency-Sensitive Competitive Learning (FSCL) algorithm
[10, 11], features a modified distortion measure that ensures all codewords in the
codebook are updated equally frequently during iterations of the training process.
Thus, the FSCL algorithm results in a codebook with maximum codeword entropy
[7]. Tt has been shown that codebooks designed with FSCL yield mean squared

errors and signal-to-noise ratios comparable to those of the locally-optimal LBG

21

algorithm in the vector quantizing of images [8]. Thus, it is expected that a FSCL
ANN will yield codebooks with good mean-squared-error performance and with en-
tropy sufficient that Huffman coding of the VQ indices would not provide significant

additional compression.

2.3 Differential Vector Quantization

Differential Vector Quantization (DVQ) combines the methods of vector quantiza-
tion (VQ) and differential pulse code modulation (DPCM). DVQ replaces the scalar
quantizer in the DPCM framework with a vector quantizer, and consequently has
many of the compression advantages of both VQ and DPCM.

Figure 6 shows the general block diagram of the DVQ algorithm. The image to
be compressed is processed in blocks, or tiles, of n X n pixels; these tiles may be
considered vectors of dimension n2. In the encoding process, the predictor uses previ-
ously constructed tiles to predict the pixel values of the current tile. This predicted
tile, PV, is subtracted pixel by pixel from the actual tile, PIX. The resulting
difference tile, DIFF, is vector-quantized and the index, INDFEX, is broadcast
via the transmission channel to the decoder. The encoder inverse vector-quantizes
INDEX, producing a reconstructed tile, PIX , to be used in later predictions. In
the decoding process, the index received from the transmission channel is inverse
vector-quantized and the tile is reconstructed in the same manner as in the encoder.
The inverse vector quantization step in the encoder is necessary so that the encoder

tracks the operation of the decoder and predictions made in each process are iden-

22

tical. Note that the codebook for the vector quantizer contains difference tiles and

must be trained appropriately on “difference images.”

Current
Tile ﬂ DIFF Vector INDEX
PIX qj Quantizer
Inverse
Vector
Quantizer
Doy
=74 BIX +
Predictor
+
ENCODER
Reconstructed | ﬁx
Tile + DTFF Inverse INDEX
- @A Vector
Quantizer
+
=%
— Predictor
DECODER

Figure 6: Differential vector quantizer algorithm block diagram

DVQ has several advantages over both scalar DPCM and VQ. As discussed

in Section 2.1, the quantization of vectors yields better compression performance

than that of scalars. Additionally, since the vector quantization is performed on

difference values rather than on the image itself, the resulting image is less “blocky”

23

[5]. Finally, the codebooks for DVQ tend to be more robust and more representative
of many images than those codebooks designed for V(QQ because the difference tiles

in a DVQ codebook are more generic than the image tiles in a VQ codebook [5].

CHAPTER II1

DVQ Algorithm Details

The general architecture of the DVQ algorithm was depicted in Figure 6. There are
two details remaining to complete the development of the algorithm. The design of

the predictor and the method of constructing the codebook are discussed below.

3.1 Prediction

All predictive techniques of image compression are an attempt to remove redundant
information from the encoding process [1]. This redundant information is obtained
from adjacent pixels, which are highly correlated, and subtracted from the pixel
currently being encoded. Many predictor algorithms have been developed for scalar
quantization, some of which are described in [1] and [3]. To be useful for differential
vector quantization, these algorithms must be adapted to predict tiles rather than
single pixels.

The DVQ algorithm described here divides the image into tiles of 2 X 2 pixels,
and processes these tiles in a raster-scan order. Several simple methods of causal

prediction for tiles of this size were investigated. Figure 7 shows a typical tile and

24

25

the pixels from previously reconstructed tiles that were used in prediction.

Previously reconstructed tiles

......................................

d e f
b x1 x2

.......................................

Current tile

Figure 7: Pixels used in the prediction schemes

Table 1 presents the six prediction schemes that were studied and the names given
to them for the purposes of the following discussion. Note that Table 1 shows the
equations for both the encoding and decoding algorithms. Predl is an average two-
pixel predictor. Pred2, presented in [3], is similar to predl, but uses reconstructed
pixel values. Pred3, presented in [5], is also is similar to predl, but uses previously
predicted values. Pred4 is an average three-pixel predictor. Predb5 is an average
four-pixel predictor. Pred6 is similar to pred4 in that it uses three pixels; however,
it uses two divisions-by-two which are more conducive to hardware implementation
than a division-by-three [1]. Except for pred2 and pred3, all the other predictors
share an imperfection in that prediction is not done identically in the encoding and

decoding processes. To illustrate, consider predl, the average two-pixel predictor.

26

Table 1: Prediction equations for encoding and decoding

| Scheme | Prediction ||
predl | Encode i, =4 Fg = T1Ee Zs agﬁ 4 = 2atm
Decode I = b%l Fo = ilj”é F3 = a-l-zﬁ Bq = :23-5:22
pred2 | Encode i = 4 Gy = 18 By = 244 7= L
Decode I = ”JFTd By = Ei—é Gy = a;d 7y = o
pred3 | Encode Ty = b‘gd T 51;*5 B3 = &J;il Py = :7:3-552
Decode Iy = i"f;‘i By = Tuke F3 = &-I-zfvl Fa :53-552
pred4 | Encode T = b+‘31+é Fo = T‘l“‘g—‘?"‘f B3 = W g = 23+§z+ji
Decode T = b+§+é - “”14'3_6‘” i3 = iﬂcg’]ﬂ Gy = a‘cs+z§z+f
pred5 | Encode ;= ’”‘344‘7“ Fo = %{ By = &+b4;z]+é By = $3+w1‘jw2+§
Decode 7, = IMZJ Ty = 5“““14& Fy = %}ﬂ By = is+il;i-iz+f
pred6 | Encode ;= W Tg = e-l—(ac127+f)/2 T3 = M(C;M By = wz+(w;+f)/2
Decode 7, = w Fo = (24-(3:127+f)/2 F3 = thﬂ By = iz+(i;+f)/2

z;: actual pixel value (unencoded)
Z;: predicted pixel value
&;: reconstructed pixel value (decoded)

27

For predicted value Z;, the two pixels come from the reconstructed tiles above and
to the left. However, for Z,, 3, and Z4, pixels from the current tile are used. This
leads to a discrepancy between the prediction performed in the encoder and that

done in the decoder. For example, in the encoding process, 5 is predicted as

- x1+é
To = 2

However, during decoding it is predicted as

- z;+¢€
o = 2

where &, is the reconstructed z; pixel. The discrepancy arises due to the fact that
the encoder cannot have access to the reconstructed pixel values of the current tile
while doing prediction. This tile cannot be reconstructed until the difference tile
has been determined, which in turn is contingent on the prediction process. Thus,
in the predl, pred4, predb, and pred6 predictors, the encoder uses actual pixel val-
ues for prediction, while the decoder uses reconstructed values. Pred2 avoids this
discrepancy by using only pixel values from previously reconstructed tiles. The
drawback to this approach is that some of the values used are more distant than
in the other schemes. Pred3 uses previously predicted values in the average. These
previously predicted values are calculated from previously reconstructed tiles, so the
discrepancy between encoder and decoder prediction is avoided [5]. The experimen-
tal results of these prediction methods used in the DVQ architecture are presented

in Section 4.1

28

DVQ Difference FSCL

Simulation ™ Images T | Training — Codebook i+1

Codebook i ————»|

Figure 8: FSCL training procedure

3.2 Codebook Design

Codebooks were created by training a FSCL Artificial Neural Network on sets of
difference values called “difference images.” An initial set of difference images was
created by passing a simple predictor over the set of training images. In this predic-
tor, for each pixel, those pixels above and to the left were averaged and the result
subtracted from the original pixel. The resulting differences were output to form a
difference image. This process is similar to the predl prediction described above and
results in difference values that are similar to those which would occur in the en-
coding and decoding algorithms. A codebook, called the seed codebook, consisting
of 128 codewords, was trained on this initial set of difference images.

The difference values in the DVQ simulation depend on the codebook used.
However, the codebook must be trained from difference values. Consequently, several
iterations of training are necessary to yield quality codebooks. The training iteration
method used here is shown schematically in Figure 8. The first codebook is the seed
codebook described above. It was found that more than two iterations of training

did not result in codebooks that yielded significantly better image quality.

CHAPTER IV

Results

The DVQ algorithm, as well as the six predictors described in Section 3.1, was coded
as a software simulation. This simulation was used to process two sets of images.
The training set consisted of images which were used to train the codebooks. The
images of testing set were used to judge the performance of the algorithm on images
outside the training data. Each set consisted of five grayscale images.

The first set of experiments evaluated the performance of the six predictors.
Once the best predictor was found, the DVQ algorithm was compared to the scalar
DPCM algorithm described in Section 1.3. Then the entropies of the codebooks

were calculated and examined. The following sections present the results obtained.

4.1 Prediction

The simulation program was used to encode and decode the images, using the each
of the six predictors. The seed codebook (see Section 3.2), with 128 codewords,
was used for each trial. Half of the tested images were from the training set used

to generate the codebook, while half were not. Table 2 presents the mean squared

29

30

Table 2: Mean squared error (MSE) of the prediction schemes

Predictor
Picture || predl | pred2 ‘ pred3 ‘ pred4 | pred5 ‘ pred6
bird 283 | 64.1 | 746 | 323 | 32.7 | 31.6

everest 18.2 16.6 16.0 16.9 16.3 18.9
fruityf 24.2 69.8 81.8 29.9 30.8 30.5
hall 59.0 | 205.9 | 260.5 | 24.3 33.0 21.3
lenna 16.1 30.8 35.1 12.4 14.8 12.8
planet 13.4 16.0 18.2 14.4 15.5 16.2
scenef 31.4 | 48.2 58.8 25.8 28.7 | 25.2
sft 70.8 97.1 | 116.6 | 89.7 | 974 93.8

tImages used in the training of the codebook.

error (MSE) between the original and the reconstructed image for each image and
each prediction scheme.

From Table 2, it appears that the pred4, pred5, and pred6 prediction schemes
yield similar results, but function better than predl, pred2, and pred3. These results
were verified by visually comparing the output images.

Separate codebooks for each predictor should be created by the iterative proce-
dure of Section 3.2 for a truly rigorous test. Since each predictor predicts differently,
the difference values generated in the prediction process will be different for separate
predictors. Thus, to accurately code the difference vectors, each predictor needs its
own codebook.

Since pred4 is not easily implemented in hardware, the pred5 and pred6 pre-

dictors were chosen for closer study. New codebooks, each of 128 codewords, were

31

Table 3: MSE of the prediction schemes with individually tailored codebooks

Predictor
Picture || predd ‘ pred6
bird 20.3 | 20.2

everest 15.7 | 16.8
fruityt 18.9 | 16.5
hall 249 | 17.8
lenna 11.7 | 114
planef 13.7 | 13.9
scenet 246 | 22.6
sf} 60.5 | 57.1

tImages used in the training of the codebook.

created for both the pred5 and pred6 predictors. The same images used in the pre-
vious experiment were encoded and decoded using both the pred5 and pred6 with
their individually tailored codebooks. The results are presented in Table 3. In terms
of MSE performance, these results suggest that there is no clear advantage of select-
ing one of these predictors over the other. In terms of hardware, pred6 is slightly
easier to implement. To calculate a predicted value for each pixel, pred6 requires two
additions and two divisions-by-two (each a right-shift of one bit); however, pred5
needs three additions and a division-by-four (two right-shifts of one bit). Therefore,

pred6 was chosen as the predictor for the algorithm.

32

Table 4: MSE of scalar DPCM and DVQ algorithms

Bits Per Pizel (bpp) MSE: No Errors MSE: ber = 1000

Scalar | DVQ | DVQ Scalar DVQ | DvVQ Scalar DVQ | DVQ
Picture || DPCM 128 256 DPCM 128 256 DPCM 128 256
bird 2.56 1.75 2.00 6.5 20.2 14.5 2152 70.2 71.6
everest 2.17 1.75 2.00 5.0 16.8 12.6 981 44.1 34.3
fruityt 2.30 1.75 2.00 5.9 16.5 11.9 604 67.1 71.0
hall 2.97 1.75 2.00 7.7 17.8 12.7 1010 71.1 63.0
kittyt 2.75 1.75 2.00 5.9 14.0 10.1 964 65.7 47.9
lenna 2.37 1.75 2.00 5.3 114 8.3 1213 47.7 34.6
mandril 4.05 1.75 2.00 13.1 89.0 66.4 3107 305.7 | 201.1
planet 2.09 1.75 2.00 4.6 13.9 10.0 1113 56.6 61.6
scenet 2.87 1.75 2.00 7.9 22.6 16.3 1993 75.7 75.7
st} 2.89 1.75 2.00 9.5 57.1 41.9 3008 159.9 | 139.7

tImages used in the training of the codebooks.
Error MSE’s averaged over 3 trials.

4.2 Comparison to scalar DPCM

The pred6 predictor was incorporated into the DV(Q simulation and codebooks of
size 128 and 256 codewords were constructed. Both the DV(Q simulation and the
scalar DPCM simulation were run on the sets of training and testing images and
the results are presented in Table 4. Table 4 shows the bits/pixel and the mean
squared errors associated with the scalar DPCM and the DVQ algorithm for both
the case of an errorless channel and an error-prone channel. For the error-prone
channel, transmission errors were simulated by randomly complementing bits in the
transmission channel. The bits were complemented so that the expected bit error
rate (ber) was 1 error per 1000 transmitted bits (ber = 1000), which corresponds to
a very noisy channel.

The scalar DPCM and DVQ algorithms produce comparable compression rates,

close to 2 bits/pixel. The compression rate of the scalar DPCM is picture-dependent

33

because of the variable-length coding employed. The DV(Q code has a fixed com-
pression rate because of the fixed-length coding of vector quantization.

Figure 9 shows the original lenna image and Figures 10 and 11 show recon-
structed images from the scalar DPCM algorithm and the DVQ algorithm with 256
codewords. Scalar DPCM yields a lower mean squared error than DV(Q). However,
as can be seen in these figures, the images are virtually indistinguishable from each
other and the original. When the images of Figures 9 through 11 are magnified, it
can been seen that the DVQ algorithm results in some slight “blocky” distortion
of edges, while the scalar DPCM algorithm maintains crisp edge reconstruction.
Figures 12 and 13 show the differences created by subtracting Figures 10 and 11
from the original image, Figure 9. These difference images have been scaled and a
constant has been added to enhance visibility.

Figures 14 and 15 show images obtained with an error-prone channel (1 error per
1000 transmitted bits). As expected, the DVQ algorithm is significantly more robust
to channel errors. The scalar DPCM simulation employed end-of-line synchroniza-
tion codes, and, when a invalid code was encountered, the preceding line was copied
to the remainder of the current line. Despite these compensatory measures, the
channel errors produced dramatic distortions in the image, and occasionally, entire

lines were missed when the end-of-line synchronization failed.

Figure 10: Reconstructed image using the scalar DPCM algorithm

34

35

Figure 12: Difference between the reconstructed scalar DPCM image and the original
image (enhanced)

36

Figure 13: Difference between the reconstructed DVQ image and the original image
(enhanced)

Figure 14: Reconstructed image with an error-prone channel, scalar DPCM algo-
rithm, ber = 1000

37

Figure 15: Reconstructed image with an error-prone channel, DVQ algorithm (256
codewords), ber = 1000

38

4.3 Codebook Entropies

The entropies of the codebooks of sizes 128 and 256 were calculated for each image.

The codebook entropy, H, for an image is

N
H= —Zpi log, p; (4.1)
i=1
where
n;
Z;'V:I n;

and N is the number of codewords in the codebook and n; is the number of times
codeword ¢ was used in the encoding of the image.

As described in Section 2.1, vector quantization outputs fixed-length codes for
each tile. For the 128-codeword codebook, the code length is 7 bits/tile; for the
256-codeword codebook, the code length is 8 bits/tile.

Table 5 shows the codebook entropies obtained from the encoding process. These
entropies give the lower bound of the number of bits with which each tile could
be encoded if Huffman encoded was employed after VQ. For both codebooks, use
of Huffman coding can provide only an additional 1 bit/tile compression, on the
average. The FSCL ANN training process produces codebooks with entropies that
are close to the bit rate because the codebooks are constructed with equiprobable
codewords. Consequently, Huffman coding cannot contribute significant additional

compression.

Table 5: Codebook entropies for DVQ

Codebook Size
Picture 128‘ 256

bird 5.78 6.67
everest | 5.47 6.36
fruityt | 5.67| 6.54
hall 5.55 6.29
kittyt 5.77 6.69
lenna 5.56 6.47
mandril | 6.75 7.72
planef | 5.68 | 6.55
scenet | 6.04| 6.96
sft 6.31 7.21

Average | 5.86 ‘ 6.75 H

TImages used in the training of the codebooks.

CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

It has been shown that the differential vector quantization algorithm detailed in
this paper achieves reasonable compression of monochrome images with tolerable
amounts of distortion. When a 256 codeword codebook is used, the DV(Q algo-
rithm reduces an image to 25% of its original size. Since the vector quantization
is performed on difference values, the blockiness associated with VQ is significantly
reduced. Consequently, DVQ preserves edge features. Performance of the DVQ
algorithm is comparable to scalar DPCM methods in terms of image quality and
compression rate.

The use of the FSCL ANN training procedure produces codebooks with codeword
entropy close to the bit rate of the vector quantizer. Consequently, variable-length
entropy encoding such as Huffman coding, can be avoided. The fixed-length VQ in-
dices are robust to transmission errors; additionally, the codebook may be ordered to
further reduce distortions due to errors. Thus, the DVQ algorithm has transmission
error performance which is much better than that of the scalar DPCM system.

The predictor and DPCM components of the DVQ algorithm were designed for

simple hardware implementation. Consequently, the vector quantizer is the only

40

41

unit which requires complex processing. It is anticipated that the VQ operation
may be implemented in hardware using an associative memory chip set [7]. Thus, a
real-time hardware realization of the DVQ algorithm is possible.

Such a hardware implementation is part of the future plans for this algorithm.
Toward this end, the DVQ architecture will be adapted to process sampled NTSC
composite color television signals which are only slightly different from the mono-
chrome images used to develop the algorithm. Additionally, some form of temporal
prediction will be incorporated. This interframe prediction should provide additional
compression and higher-quality output images. Finally, the vector quantizer will be
made adaptive. It is expected that a FSCL ANN architecture will be used to train

new codewords online to update the codebook as image statistics change.

[1]
2]
3]

[4]

[5]

[6]
7]

8]

[9]

[10]

REFERENCES

A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ:
Prentice Hall, 1989.

P. H. Ang, P. A. Ruetz, and D. Auld, “Video Compression Makes Big Gains,”
IEEFE Spectrum, vol. 28, pp. 16-19, October 1991.

W. G. Hartz, R. E. Alexovich, and M. S. Neustadter, “Data Compression Tech-
niques Applied to High Resolution High Frame Rate Video Technology,” NASA
Contractor Report 4263, Analex Corporation, Cleveland, Ohio, December 1989.
Prepared for NASA Lewis Research Center under Contract NAS3-24564.

M. J. Shalkhauser and W. A. Whyte, Jr., “Digital CODEC for Real-Time
Processing of Broadcast Quality Video Signals at 1.8 Bits/Pixel,” Technical
Report NASA TM-102325, National Aeronautics and Space Administration,
Lewis Research Center, Cleveland, 1989. Prepared for Global Telecommunica-
tions Conference sponsored by IEEE, Dallas, Texas, Nov 27-30, 1989.

C. W. Rutledge, “Vector DPCM: Vector Predictive Coding of Color Images,”
in Proceedings of the IEEE Global Telecommunications Conference, pp. 1158—
1164, September 1986.

R. M. Gray, “Vector Quantization,” IEEE ASSP Magazine, vol. 1, pp. 4-29,
April 1984.

A. K. Krishnamurthy, S. B. Bibyk, and S. C. Ahalt, “Video Data Compres-
sion Using Artificial Neural Network Differential Vector Quantization,” in Pro-
ceedings of the Second NASA Space Communications Technology Conference,
(Cleveland, OH), pp. 95-101, November 1991.

S. C. Ahalt, P. Chen, and A. K. Krishnamurthy, “Performance Analysis of T'wo
Image Vector Quantization Techniques,” in Proceedings of the International
Joint Conference on Neural Networks, vol. I, (Washington, D.C.), pp. 169-175,
June 18-22, 1989.

Y. Linde, A. Buzo, and R. M. Gray, “An Algorithm for Vector Quantizer De-
sign,” IEEE Transactions on Communications, vol. COM-28, pp. 84-95, Jan-
uary 1980.

S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D. E. Melton, “Competi-
tive Learning Algorithms for Vector Quantization,” Neural Networks, vol. 3,

pp. 277-290, 1990.

42

43

[11] A. K. Krishnamurthy, S. C. Ahalt, D. Melton, and P. Chen, “Neural Networks
for Vector Quantization of Speech and Images,” IEEE Journal on Selected Areas
in Communications, vol. 8, pp. 1449-1457, October 1990.

