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Abstract

This paper focuses on recent developments in the use of Artificial Neural Networks (ANNs) for
Vector Quantization (VQ). A review of the fundamental ANN models used for VQ is presented,
including Competitive Learning networks, Kohonen Self-Organizing Feature Maps, and Conscience
Techniques including the FSCL algorithm. The paper also briefly reviews the use of VQ-based
clustering techniques in classifiers, including Learning Vector Quantizers, Radial Basis Function
Classifiers, and the ART architectures.

The paper then addresses some of the difficulties associated with the use of vector quantization
in practical applications. In particular we focus on the use of VQ techniques for image data
compression. While it has long been argued that one of the attractive features of ANNs is that they
are readily adaptable to real-time hardware, this goal has been elusive. This paper discusses our
successful efforts to construct a real-time Differential Vector Quantizer (DVQ) using ANN-inspired
VLSI processors. This discussion concentrates on coding performance and entropy characteristics,
and we also describe the DV(Q architecture we have implemented.

I. Introduction

In many digital systems, even those in which substantial channel bandwidth is available, e.g., those
employing fiber optic communication links, there is a pressing need to compress source signals. The
goal is to transform a continuous-time signal into a representation that can be easily processed,
transmitted, or stored. Vector quantization is one technique which encodes a discrete-time signal
in order to both quantize and compress the data.

Typically, applications which employ VQ are those which require large amounts of storage or
transmission bandwidth and can tolerate some loss of fidelity for the sake of compression. Vector
quantization has been shown to be useful in compressing data that arises in a wide range of
applications, including image processing [1, 2], speech processing [3], facsimile transmission [4],
and weather satellites [5]. However, practical use of VQ techniques has been limited because of
the prohibitive amount of computation associated with existing codebook design and encoding
algorithms [6].

fAppears in Proceedings of the International Workshop on Adaptive Methods and Emergent Techniques for Signal
Processing and Communications (D. Docampo and A. R. Figueras, eds.), (Bayona, Spain), pp. 42-61, June 1993.



This paper discusses the application of Artificial Neural Networks (ANNs) to VQ. Some of the
attractive features of ANNs for VQ are that: 1) ANNs are based on biological processing systems
that exhibit interesting, yet elusive computational properties, 2) ANNs are inherently parallel and
permit highly parallel implementations, and 3) ANNs are adaptive, implying the possibility of
adaptive vector quantizers. Our ongoing research focus is directed towards implementing real-time
vector quantizers for image compression. The discussion here includes a description of a Competitive
Learning (CL) training algorithm developed for efficient design of VQ codebooks. This algorithm
yields near-optimal results and is computationally more efficient than other ANN vector quantizers
which have appeared in the literature.

The paper is organized as follows. First a review of VQ and the fundamental ANN models used
for VQ are presented, including Competitive Learning networks, Kohonen Self-Organizing Feature
Maps (KSFM), and Conscience Techniques which include the Frequency-Sensitive Competitive
Learning (FSCL) algorithm. Next, in order to demonstrate the fundamental utility of VQ, the
paper discusses the use of VQ-based clustering techniques in classifiers, or pattern recognizers.
We briefly describe Learning Vector Quantizers, Radial Basis Function Classifiers, and the ART
architectures.

We then turn our attention to more practical considerations and focus on the task of image com-
pression using VQ. The paper discusses our design of a real-time VQ encoder. Performance charac-
teristics and coding efficiency are considered from a perspective of both source and channel coding.
This paper concludes with a discussion of a real-time Differential Vector Quantizer (DVQ) sys-
tem which we have recently constructed. The DVQ system implementation uses an ANN VLSI
processor.

II. Vector Quantization

A Vector Quantizer (VQ) statistically encodes data vectors. Typically the data vectors are discrete
samples drawn from one-dimensional or multi-dimensional continuous-time signals, e.g., speech
waveforms or image rasters. The objective of VQ is to efficiently encode the signal into a digital
representation that compactly represents the original signal while retaining the essential information
contained in the original signal. Three possible goals [7] of such a conversion are to:

e reduce the bandwidth required to transmit a signal, or maximize the quality of a signal
transmitted over a limited-bandwidth channel, or

e reduce the memory required to store a signal, or maximize the quality of a signal stored on
a limited-memory device, or

e produce a signal representation that retains all necessary information while minimizing the
processing required by subsequent (downstream) algorithms.

While a detailed discussion of vector quantization is beyond the scope of this paper, a brief dis-
cussion of the fundamental concepts is presented below. A recent book by Gersho and Gray [7]
provides a complete treatment of the theoretical underpinnings of VQ, as well as a complete discus-
sion of practical issues in traditional VQ. Additional detailed discussion can be found in [8], [2], and
[9]. Lloyd, in [10], discusses an algorithm for quasi-optimal quantization of data, with extensions
by Linde, Buzo, and Gray (LBG) [11] to arbitrary distortion measures and to vectors. The LBG
algorithm is widely used to design the codebooks for VQ. Additionally, a discussion of the use of



vector quantizers in speech applications can be found in [3] and its use in image coding is described

in [1].

A. Basic Vector Quantization Concepts

Vector quantization techniques capitalize on the underlying structure inherent in the data being
quantized. The space of the vectors to be quantized is divided into regions and a reproduction
vector is calculated for each region. Given any data vector to be quantized, the region in which
the vector resides is calculated and is then represented by the reproduction vector for that region.
Instead of transmitting or storing a given data vector, a symbol which indicates the appropriate
reproduction vector is used. This results in considerable savings in transmission bandwidth, albeit
at the expense of some distortion.

A simple example can be used to elaborate the difference between vector quantization and scalar
quantization. Consider data samples drawn from some distribution, as shown in Fig. la. Suppose
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Figure 1: a) Data samples drawn from an arbitrary distribution (left) and b) one scalar quantization
of the data (right). Input samples are denoted using x’s, and the centroids of the quantization
regions are denoted with o’s.

this data is scalar quantized with a 2-bit index used to indicate the region from which the sample
originated. One (rather naive) scalar quantization is shown in Fig. 1b, where the circles indicate
the centroids of each of the regions. In effect, each of the data points in a region will be represented
by the centroid of the rectangular region. The associated Mean Square Error (MSE) can be easily
calculated from the average distance between each data point and its associated regional centroid.
Of course, a more sophisticated scalar quantization can be realized by adjusting the centroids of each
region based on the one-dimensional probability distribution function of each sample dimension,
but the region will still be rectangular, and, in general, non-optimal (in the MSE sense).

Now consider the same set of samples, but consider the placement of the four centroids so as
to minimize the MSE, as shown in Fig. 2a. This results in regions which are non-rectangular,
in fact this procedure partitions the space into Voronoi regions, as shown in Fig. 2b. Thus, the



placement of the centroids to optimally minimize MSE must be done on a vector basis. This simple
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Figure 2: a) Data samples drawn from an arbitrary distribution with centroids placed to minimize
MSE (left) and b) resulting Voronoi regions of the vector quantization of the data (right).

example demonstrates how, by considering the data as vectors and minimizing the distortion (MSE),
considerably improved quantization can be realized. Note also that this process is essentially one
of clustering. The centroids are commonly called reproduction vectors, exemplars, or codewords,
while the collection of the reproduction vectors is called the reproduction alphabet or codebook.

More formally, vector quantization maps arbitrary data vectors to a binary representation or sym-
bol. Thus, VQ is a mapping from a k-dimensional vector space to a finite set of symbols, M.
Associated with each symbol m € M is a reproduction vector X,,. The encoding of the data vector
X to the symbol m is a mapping, V@Q : x = (z1,22,---,z;) — m, where m € M and the set M
has size M. Assuming a noiseless transmission or storage channel, m is decoded as X,,, the re-
production vector associated with the symbol m which (ideally) minimizes some distortion metric.
Since there are M elements in the set M, there are M possible entries in the codebook. Once the
codebook is constructed and, if necessary, transmitted to the receiver, the encoded symbol m acts
as an index into the codebook. Thus, the rate, R, of the quantizer is R = logy M in bits per input
vector. Since each input vector has k components, the number of bits required to encode each input
vector component is R/k.

Because each data vector is represented as one of the codebook entries, the composition of the
codebook determines the overall performance of the system. A number of different performance
criteria can be used to determine an optimal codebook. For example, in speech and image transmis-
sion applications the usual objective is to minimize the overall distortion in the signal due to VQ.
Thus the design criterion used to design an optimal codebook is the minimization of the average
distortion in encoding vectors using the codebook.

Another possible criterion is to maximize the entropy of the codebook, i.e., to ensure that each of
the codewords is used (approximately) equally frequently in encoding the data. The idea here is to



ensure that all the codewords are doing their “fair share” in representing the input data. As will
be shown, this is a very useful criterion in developing ANN training algorithms for VQ design. In
general, these two criteria are not equivalent; however, it can be shown that for the case when M
is fixed and k is very large, the codebook which maximizes entropy also minimizes the expected
distortion [3, 12].

For a specified performance criterion, VQ codebook-design techniques attempt to determine a
codebook that is optimal with respect to this criterion. In general, this requires a-prior: knowledge
of the probability distribution of the input data. Typically, however, this distribution is not known?,
and the codebook is constructed through a learning or training process. During training, a set
of data vectors that is representative of anticipated data is used to determine a quasi-optimal

codebook.

During the training process, a distortion measure, d(x,X) is used to determine which data points
are to be considered as being in the same region. The distortion measure can be viewed as the
cost of representing x as X. By determining which training data vectors lie in a particular region,
the k—dimensional data space is partitioned into cells. All of the input vectors that fall into a
particular cell are mapped to a single, common reproduction vector. If the cells are partitioned
according to a minimum-distortion rule, then the partition is referred to as a Voronoi or Dirichlet
partition.

A batch training process used to build a codebook proceeds as follows. Each of the data vectors is
compared to the current codewords, and the corresponding distortion is calculated. The codeword
that most closely matches the data vector, i.e., the reproduction vector which represents the input
vector with minimum distortion, is selected and a codeword modification is calculated such that
the modified codeword would reflect the inclusion of this new data vector in its partition. After
the codeword modifications for all of the training vectors are calculated, each codeword is altered
by an amount equal to the average of all of its calculated modifications.

As can be seen from this discussion, the training process is computationally expensive. Moreover,
most of the algorithms currently used for VQ design, e.g., the LBG algorithm, are batch-mode
algorithms [11] and need to have access to the entire training-data set during the training process.
Because large training data sets are required to form an adequate representation of the the input
vector space in certain applications (e.g., speaker independent speech coding), batch-mode training
algorithms are problematic. Also, in many communication applications, changes in communica-
tion channels invalidate codebooks designed under different channel assumptions. Under these
circumstances (both for handling large training-data sets and changing channel conditions), it is
beneficial to work with adaptive VQ design methods, even if these are suboptimal in a theoretical
sense. Adaptive VQ designs alter the codebook vectors with the arrival of each new training vector,
and no “batching” of the training-data vectors occurs. One major advantage of formulating VQ as
ANNSs is that adaptive training algorithms that are used for ANNs can be applied to VQ. In the
next section we discuss some of the ANN vector quantizers that have appeared in the literature.

III. Neural Networks for Vector Quantization

ANN techniques in VQ encoding and codebook design (training) have been demonstrated by number
of researchers. For example, researchers [13] have used Kohonen Self-organizing Feature Maps [14]

!Even if the input distribution is known and relatively simple, it is not generally possible to solve for an optimal
codebook, i.e., the problem does not permit a closed-form solution.



to construct VQ codebooks for speech applications, while others [15] used them to build VQ code-
books for image coding. Similarly, work with variable-region vector quantization of both speech
and image is discussed in [16]. A brief review of the general framework of ANN vector quantization
is given below.

A. FEncoding

It is straightforward to formulate an ANN structure for the encoding of vectors. As before, let
the vectors which are to be quantized be from a k—dimensional vector space, and let a distortion
measure d(X,y) be defined in this space. Let the size of the codebook be M, and let the codewords
be ¢;, i =1,---, M. Consider an ANN with M neural units, and make the i** codeword, ¢;, the
weight vector associated with neural unit ¢. Given any vector x that is to be encoded, x is fed in
parallel to all the M neural units. Each of these units computes the distortion between the input
vector and its weight vector, d; = d(x,¢;), i=1,---, M. The input vector is then encoded as the
wndex 1* of the neural unit with the minimum distortion, d;» = min; d;.

For a specific codebook, the “nearest-neighbor” encoding procedure described above is optimal [2].
Note that all computations, except for picking the “winning” neural unit and determining its index,
are carried out in parallel. A number of ANN methods for picking the winner have been discussed
in the literature. These include Grossberg’s on-center, off-surround method [17], Lippmann et. al.’s
MAXNET [18] and the Minimum Distance Automaton of Winters and Rose [19] . Also, as shown
by Hecht-Nielsen [20], it is possible to directly compute the index number of the winning neural
unit by adding an additional output layer to the ANN.

B.  Training

We have shown in the previous section that ANNs can be used for encoding in vector quantizers.
A more fundamental benefit of formulating vector quantization as an ANN task is that the large
body of ANN training algorithms that have been developed can now be adapted to the problem of
training vector quantizers. We discuss below three types of training algorithms: the Competitive
Learning (CL) network, the Kohonen Self-organizing Feature Map (KSFM), and the Frequency-
Sensitive Competitive Learning (FSCL) network.

1. The Competitive Learning Network

An adaptive version of the LBG algorithm for the training of vector quantizers can be realized with
a Competitive Learning (CL) network. Assume that the ANN VQ is to be trained on a large set
of training data. Further assume that the M neural units are initialized with the weight vectors
w;(0),i=1,---, M. These weights can be generated randomly or they can be the first M vectors
of the training set.

Starting with these initial weight vectors, the training algorithm iterates a number of times through
the training data, adjusting the weight vectors of the neural units after the presentation of each
training vector. The algorithm used to adjust the weight vectors is based on competitive learning,
which has been studied in depth by Grossberg [17, 21] and Kohonen [14, 22, 23] and by other
researchers [20, 24, 25, 26].

The algorithm for updating the weight vectors is to first present the input vector x to all of the
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Figure 3: Movement of References Vectors, four data clusters, Competitive Learning.

neural units. Each unit then computes the distortion between its weight and the input vector.
The unit with the smallest distortion is designated as the winner and its weight vector is adjusted
towards the input vector.

Let w;(n) be the weight vector of neural unit ¢ before the input is presented. The output z; of the
unit is computed as follows.

Zi:{ 1 if d(x,w;(n)) < d(x,wj(n)),j=1,---, M O

0 otherwise.

The new weight vectors w;(n + 1) are computed as w;(n + 1) = w;(n) + €(x — w;(n))z;.. In the
above equation, the parameter € is the learning rate, and is typically reduced monotonically as
learning progresses. Note that this update rule is a form of Hebbian learning.

A significant problem with this training procedure is that it sometimes leads to neural units which
are under-utilized. An excellent discussion of this problem can be found in [17] and subsequently
in [24, 21]. Other researchers have used various methods to address this problem [20, 27]. The
following example illustrates the problem of node under-utilization. The data for this example is
from four clusters. An ANN with four units was trained using the above procedure. The initial
weight vector of all the units was set to the same value of (1,0). As shown in Figure 3 only one of
the weight vectors associated with the neural units is modified during training. The index of this
single neural unit is consequently used for the quantization of data from all four clusters. Note
that while the initial weight vectors for CL training are typically picked randomly; we have chosen
the same value as an extreme example to illustrate the under-utilization problem of CL networks.
Nevertheless, “regional” versions of this type of problem occur frequently in practical applications.



2. The Kohonen Self-Organizing Feature Map

Another important ANN algorithm that has been used for vector quantization is the Kohonen
Self-organizing Feature Map (KSFM) [14, 13], initially conceived to illustrate the formation of
topological feature maps in the brain. The KSFM and the Competitive Learning network are sim-
ilar; however, in the KSFM algorithm each neural unit has an associated topological neighborhood
of other neural units. During training the winning neural unit and the neural units in the neighbor-
hood of the winner are updated. The size of the neighborhood is decreased as training progresses
until each neighborhood has only one unit, i.e., the KSFM ANN becomes a CL net after sufficient
training.

Let w;(n) be the weight associated with the 3" neural unit, and let x be the input vector. Compute
the distortion d(x,wj(n)), ¢ = 1,---, M, and let the neural unit with the minimum distortion be
i*. Also, let N(*) be the topological neighborhood associated with unit ¢*. The weight update
equations are:

wi(n) +€e(n)[x — w;(n)], i€ N(¥)
w;(n), otherwise.

wi(n+1) = { (2)

Note that the gain sequence €(n) slowly decreases with time to zero.

As can be seen from these equations, the KSFM structure involves more computation than the
competitive learning network. At each step of the training process, the neighborhood, N(¢*), of
the winning node must be computed and all of the units in the neighborhood updated.

By the use of neighborhoods, the KSFM network overcomes the problem of under-utilized nodes
discussed above. In Figure 4a we show the behavior of the KSFM for the 4 cluster problem
previously discussed. As shown in Figure 4, all 4 neural units learn and move to the center of the
4 data clusters. All four weight vectors initially move together to the center of all four clusters of
data. Then, once the neighborhood size is reduced to one, convergence to the data cluster centroids
occurs. This example clearly illustrates the two phase learning mentioned by Kohonen [14].
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tors, four data clusters, Kohonen Self-Organizing Feature Map. (left) b.) Movement of References
Vectors, four data clusters, Frequency- Sensitive Competitive Learning (right).



One drawback of the KSFM network compared to the Competitive Learning network is the ad-
ditional computation involved during training. This additional computation arises from both the
calculation of the neighborhood of the winning unit, and from the updating of all members of
the neighborhood. We describe below an alternative ANN that does not require the calculations
associated with neighborhoods and solves the CL problem of under-utilized neural units.

3. Frequency-Sensitive Competitive Learning

One motivation of the Frequency-Sensitive Competitive Learning (FSCL) algorithm is to overcome
the limitations of the simple Competitive Learning network while retaining its computational ad-
vantages. Since one of the main problems with the CL network is that some of the neural units may
be under-utilized, the learning algorithm for the FSCL network keeps a count of how frequently
each neural unit is the winner. This information is used to ensure that, during the course of the
training process, all neural units are modified an approximately equal number of times. A similar
approach was first described by Grossberg [17, 21], who suggested the use of a variable-threshold
model to overcome the problem. Another similar approach, called the conscience method, has been
suggested by DeSieno [27, 20] and subsequently used in slightly modified form in.

The FSCL method represents a method of applying the models introduced by Grossberg to the
problem of Vector Quantization. In the FSCL network, each unit incorporates a count of the number
of times it has been the winner. The distortion measure used to determine the winner is directly
modified to include this count. Specifically, let d(x,w;(n)) be the distortion to be minimized during
the quantization process, and let u;(n) be the total number of times that neural unit ¢ has been
the winner during training. A modified distortion measure for the training process is defined as:

d*(x,w;) = d(x,w;(n)) = F(u;(n)). (3)

The “fairness function”, F(.) is an increasing function of its argument during the early stages of
training. The winning neural unit at each step of the training process is the unit with the minimum
d*. Note that if a given neural unit wins the competition frequently, its count and consequently d*
increase. This reduces the likelihood that this unit will be the winner, giving units with a lower
count a chance to win the competition. However, no change is made to the learning rate.

In Figure 4b we illustrate the performance of the FSCL network on the same four cluster problem
described previously. As can be seen from the figure, all four neural units are utilized and they
move directly to the cluster centers. Thus, in the FSCL network, each neural unit dynamically
adapts its chances of winning based on both the distortion and the number of times it has been
modified. This property ensures that the neural units will be modified an (approximately) equal
number of times.

In Table 1 we show codeword entropy and the average distortion for the various codebook design
methods for a codebook size of 128. The training vectors for this example were the ten autocorre-
lation coefficients [28] obtained from short-time windows of a speech signal. Note that the FSCL
method leads to the most uniform utilization of the codewords in the sense that each codeword is
used an approximately equal number of times. The CL method utilizes one codeword 40% of the
time and many of the neural units are never used to encode the data. The KSFM codebook shows
greater uniformity in codebook utilization and results in an entropy of 6.574. This is consistent
with the results reported by Naylor and Li [13] which show that the KSFM technique yields code-
books of more uniform utilization than those produced by covering followed by K-means clustering.



Table 1: Entropy comparison of various codebook design techniques, Itakura-Saito distortion.

Codebook Design Method | Entropy | Distortion
Competitive Learning n/a 2.429
LBG 6.477 0.359
KSFM 6.574 0.394
FSCL 6.917 0.357

The FSCL network not only yields the highest entropy, 6.917, but also the lowest Itakura-Saito
distortion among all of the methods.

IV. ANN VQ Classifiers

ANN techniques in VQ encoding and codebook design (training) have been demonstrated by number
of researchers. In the next section of the paper we will discuss a specific example of how these
VQ techniques can be used in one practical application, image compression. However, the VQ
techniques discussed here are also applicable to a number of other tasks. In this section we briefly
discuss the use of VQ techniques for classification tasks.

VQ is an example of unsupervised clustering. Unsupervised clustering techniques can be used to
realize classifiers simply by associating a posterior: a class label with each reference vector. Then
when an input vector is closest to a particular reference vector, the input vector is classified as
belonging to the class of nearest reference vector. Multiple reference vectors can have the same
class, so that non-circular class regions can be accommodated, at the cost of additional reference
vectors. K-means classification is one example of this type of classifier.

In many situations, however, class information is available a priori. Typically this means that each
training vector has an associated class label, and it is this data pair that is used during training. In
most cases this information can be utilized so the objective becomes maximization of classification
accuracy rather than, as in the case of of VQ clustering, distortion minimization.

Algorithms that attempt to optimally utilize available class information include Learning Vector
Quantizers , Radial Basis Functions, and the ART architectures. A brief description of each of
these techniques is given below.

4. Learning Vector Quantization

Learning Vector Quantization (LVQ) is a method developed by Kohonen [29] to “tune” the location
of reference vectors in order to improve classification accuracy. The idea is to move reference vectors
nearer to or farther away from decision surfaces in order to locate the decision surfaces as optimally
as possible.

The most sophisticated technique is called LVQ3 [29], and can be described as follows. Let wj(n)
be the weight associated with the " neural unit, and let x be the input vector. Compute the
distortion d(x,w;(n)),?=1,---, M, and let the neural units with the minimum distortion and the

next smallest distortion be 7* and ¢** in either order. The weight update equations are:



Wio(n+1) = { w;+(n) — e(n)[x — w;«(n)], where w;» and x belong to dif- (4)
ferent classes.
( Wy (n) — €(n)[x + W+ (n)], where w;» and x belong to
the same class. Further, in
Wi (n+1) = both cases, x must fall into a (5)
symmetric window of non-zero
width around the midplane

separating w;» and wjs«., or

—

w;(n) — ae(n)[x — w;(n)], where ¢ € *,¢** and x, w;»

wi(n+1) = and w;+ belong to the same (6)
class.
(7

A simple demonstration of this algorithm is shown in Fig. 5.

window

Figure 5: An example of the window and consequent reference vector movement in LVQ3.

This simple algorithm has been shown to yield results that, in practical tests, are superior to those
of either the kNN algorithm or a parametric Bayesian classifier.

A. Radial Basis Function Classifiers

Radial Basis Function (RBF) classifiers are hybrid-architecture Artificial Neural Networks (ANNs)
which consist of two layers[30, 31]. The first (hidden) layer (see Fig. 6) is an unsupervised layer and
the second (output) layer is a supervised layer. The hidden layer uses locally receptive functions
which are most strongly activated when the input feature vector is located at the mean of the
function, i.e., a maximum response is obtained from one of the hidden units only when the input
vector is equal to the mean of the particular hidden unit. The mean vectors are usually referred
to as prototype vectors, and can be thought of as a catalog of common parametric models. These
models will correspond directly to the generalized likelihood functions described above and are
typically radially symmetric, normalized Gaussians.

In contrast with the techniques we have discussed previously, these activation functions do not
compete, but are all simultaneously activated to varying degrees. If the input vector lies in the
center of a unit’s receptive field, then that unit will respond maximally and the remaining units
will, at most, produce attenuated responses. On the other hand, if an input vector lies in two
receptive fields, then both activation functions will respond (less that maximally), and the result is
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Figure 6: . A schematic overview of a Radial Basis Function Classifier.

passed on to the output layer. Since the responses are normalized, the pattern of activations across
the receptive units can be interpreted as a measure of fit, or closeness, of the input vector to the
reference vectors[32]. The metric which is used to determine the measure of closeness of each input
vector to each receptive field prototype (center) can have a profound impact on the performance on
the classifier. We have studied the effects of different metrics and have shown that the likelihood
distributions and the a prior: class probabilities of input data can suggest which metric to employ
for a given classification domain [33].

The receptive field outputs are then passed on to the output layer for further processing. A
supervised optimization procedure, e.g., backpropagation, is used to adjust the relative weighting
of the contributions from each of the activation units. Obviously the system designer must use a
suitably chosen output representation, a non-linear output activation function, and an appropriately
crafted error function.

The relationship of RBF classifiers with traditional Bayesian classifiers is direct. For example,
Richard and Lippmann [32] have recently shown that many neural-network classifiers provide out-
puts which estimate Bayesian a posterior:i probabilities, allowing networks to be combined for higher
level decision making. For RBF classifiers this means that the underlying models constituting the
hidden layers must be either derived optimally from the a prior: phenomenological knowledge or
be derived directly from the training data. In the latter case the prototypes vectors can be readily
determined using some form of clustering or unsupervised learning, e.g., FSCL [8].

B. Adaptive Resonance Theory

The Adaptive Resonance Theory (ART) classifiers are far too complex to adequately describe here.
However, one very novel aspect of these architectures is that they effectively address a subtle



classification issue. In a typical unsupervised classifier (and in many supervised classifiers), every
input vector is, of course, closest to one of the reference vectors and is thus classified as belonging
to the class associated with the closest reference vector. The result is that input vectors which are
quite dissimilar to all of the reference vectors are, nonetheless, classified as belonging to some class.

A more desirable property, in many applications, is to classify an atypical input vector as belonging
to a class designated as "unknown” or “unusual”. A classifier which exhibits this property effectively
forms closed decision boundaries around each class, as shown in Fig. 7
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Figure 7: An example of closed decision boundaries.

The ART architectures realize closed decision boundaries while operating in an unsupervised mode.
Closed decision boundaries, as well as the stable retention of long-term memory (LTM) - manifested

2 _ are guaranteed by requiring that an input vector (Short-Term Memory)

as reference vectors
closely resemble a LTM vector before modifications to the reference vector are effected. A geometric

explanation of how this property is realized is shown in Fig. 8.

A similarity vector, R, is the sum of cP, a scaled version of the LTM pattern and Up, a normalized
version of the STM. If Up and cP point in the same direction, their sum, R has unit length and lies
on the unit hypersphere. If Up and cP point in different directions, their vector sum falls within
the unit hypersphere. A “vigilance” parameter, p defines an inner hypersphere radius which is used
to define how closely Up and cP must lie in the same direction. If R is shorter than p and falls
within the inner hypersphere then no learning occurs, i.e., no modification of P occurs.

This simple example demonstrates the mechanism by which an ART classifier 1) forms closed
decision boundaries, and 2) solves the “stability-plasticity” problem. A stable classifier is one which
preserves the values of reference vectors (LTM) for extended time even if the input distribution
changes. A classifier exhibits plasticity if the classifier adapts to unique input vectors. One should
note that other VQ-based techniques (simple VQ, KSFM, FSCL, LVQ, and RBFs) are operated in

either a stable mode or a plastic (learning) mode. In contrast, an ART classifier is able to form

2In the following discussion, we will refer to the reference vectors as LTM memory vectors, and the input vectors
as Short-Term Memory. This is an attempt to remain consistent with the terminology of Grossberg, but with a
measure of imprecision. Strictly speaking, the LTM and STM vectors, as described by Grossberg are processed
versions of the reference vectors and the input vectors. We take this liberty to in order to facilitate the discussion.
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Figure 8: . The relationship between scaled LTM, cP, and normalized STM, Up,.

stable LTM patterns while remaining plastic. This is accomplished by adding LTM nodes when no
existing LTM pattern is found to satisfy the vigilance test.

This brief review of VQ-based classifiers has demonstrated how VQ techniques are applied to
classification technology. In the following section, we return to our discussion of VQ and investigate
the use of VQ for image compression.

V. A VQ Image Encoder Implementation

This section discusses an algorithm for compression of digital image data. The algorithm, known as
Differential Vector Quantization (DVQ), combines differential pulse code modulation (DPCM) with
vector quantization (VQ). The VQ codebooks are designed using Frequency-Sensitive Competitive
Learning (FSCL) [8, 34]. Because, as discussed, FSCL attempts to maximize codebook entropy
while minimizing distortion, additional entropy coding, which is commonly used to increase the
compression of scalar DPCM schemes, is not needed. Therefore, the FSCL DVQ algorithm achieves
compression rates similar to scalar DPCM methods while remaining robust in the presence of
channel errors [35, 36]. The codebooks can also be structured so that variable-bit-rate encoding is
supported without sacrificing insensitivity to channel errors.

Differential Vector Quantization (DVQ) combines the methods of vector quantization (VQ) and
differential pulse code modulation (DPCM). DVQ replaces the scalar quantizer in the DPCM
framework with a vector quantizer, and consequently has many of the compression advantages of
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Figure 9: Differential vector quantizer algorithm block diagram

both VQ and DPCM. DVQ has been presented previously in [37], where it was called vector DPCM,
and in [7], where it was called predictive vector quantization (PVQ). Other methods of combining
vector quantization and prediction exist; see [38] and [7]. Figure 9 shows the general block diagram
of the DVQ algorithm. A prototype of this encoder has been constructed using VLSI and MSI
circuitry. The encoder runs in real time, operating at approximately 4 Gips.

DVQ has several advantages over both scalar DPCM and VQ. As mentioned above, the quantization
of vectors yields better compression performance than that of scalars. Additionally, since the vector
quantization is performed on difference values rather than on the image itself, the resulting image
is less “blocky” [37]. Finally, the codebooks for DVQ tend to be more robust and more universally
representative than codebooks designed for VQ because the difference tiles in a DVQ codebook are
more generic than the image tiles in a VQ codebook [37].

There are many decisions to be considered in the design of a DVQ algorithm, such as tile size, distor-
tion criterion, and method of prediction. These issues have been discussed in previous publications
and so are omitted here. For more detail, refer to [35, 36].

The bit-rate of VQ coding may be varied by changing the number of codewords with which the
encoding is done. That is, reducing the number of codewords present in the codebook results
in an increase in compression ratio (a decrease in bit-rate). There are two simple methods of
implementing such variable bit-rate coding within our DVQ algorithm. Each method allows coding
to be done at a number of predefined bit-rates.

In the first method, the encoder stores a set of different codebooks, each of different size. Each



codebook has been trained independently on training images with the FSCL ANN algorithm.
Consequently, we expect that each codebook has nearly maximal entropy for its size. The bit-rate
is set by the choice of codebook used for coding. The encoder informs the decoder, which has an
identical set of codebooks, of the codebook choice. We call this technique the Trained method of
variable bit-rate DVQ coding.

In the second method, variable bit-rates are achieved by encoding using subsets of one fixed code-
book. That is, the encoder and decoder have only one codebook, and tables of pointers define
subsets within this codebook. The bit-rate is varied by selecting which subset of the codebook is
used for coding. The encoder informs the decoder of the subset choice. We call this technique the
Eztracted method of variable bit-rate DVQ coding.

Several steps are involved in the incorporation of the FEztracted method into the DV(Q algorithm.
Initially, codebooks of different sizes are trained with the FSCL ANN algorithm, as in the Trained
method. The largest of these codebooks (say, of size n) is chosen as the codebook that will be stored
in the encoder and decoder; this codebook is the basis codebook. Then, subsets are identified within
this basis codebook; this process is called eztracting codebooks. To extract a codebook of size m,
where m < n, we identify the m codewords in the basis codebook which are closest, by Euclidean
distance, to the m codewords in the smaller codebook. Then, we create a table of pointers to
these m codewords. Tables of pointers are created in this fashion for each of the smaller codebooks
extracted from the basis codebook.

Both the Trained and Extracted methods can easily be incorporated into a hardware implementation
of the DVQ algorithm. It should be noted that the Trained method requires more storage space
because it stores multiple codebooks. Also, the Eztracted method is slightly more computationally
complex since it uses pointers; however, this indirection has minimal impact on encoding speed.

A comparison of the Trained and Ezxtracted methods described above is shown in Fig. 10. To
generate these figures, ten grayscale images (8 bits per pixel) were coded with the DVQ algorithm
at varying bit-rates, using both the Trained and Eztracted methods described above. The basis
codebook contained 256 codewords. It can be seen from these results that the Trained method
provides slightly better mean squared error (MSE) at the same bit rate than does the Extracted
method. However, the visual quality of the two methods at the same bit-rate is virtually identical.

Figure 11 presents the results obtained when errors are present in the transmission channel. Again,
the Trained and Eztracted methods perform similarly both with respect to MSE and visual quality.
We have used an artificially high error rate (1 error per 1000 transmitted bits) to generate these
results. However, our DVQ algorithm is quite insensitive to these channel errors, regardless of
compression rate. In Fig. 12 we show that the amount of additional distortion due to channel
errors is reduced as the size of the codebook is reduced. This effect is due to the fact that the
codebook sorting algorithm we employed is more effective on smaller codebooks.

VI. Conclusions

This paper has focused on the use of Artificial Neural Networks (ANNs) for Vector Quantization
(VQ). A review of the fundamental ANN models used for VQ was presented, including Competitive
Learning networks, Kohonen Self-Organizing Feature Maps, and the FSCL algorithm. To more fully
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Figure 10: Rate-distortion curves for Trained and Eztracted codebooks with no channel errors.

demonstrate the utility of these ideas, we then discussed the use of V@ techniques in constructing
ANN-based classifiers. Finally, we discussed the use of ANN VQ in constructing real-time, robust
image coders, focusing on the coding performance and entropy characteristics of these techniques,
and the performance that can be realized when operating over noisy transmission channels.
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